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Theory of reconstructive phase transitions in lyotropic complex fluids
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A phenomenological theory that describes the reconstructive transformations between ordered phases in
lyotropic complex fluids is proposed. The symmetry-breaking order parameter of such transformations is
assumed to be the undulation of the interfaces between the molecular aggregate regions and the solvent. It is
shown to coincide with the first harmonics of a Fourier series expressing the form of the interfaces. In this
framework, direct and reversed mesophases are shown to be related by a symmetry operation denominated the
fluid-reversal symmetry. This underlying symmetry of the system clarifies a number of features of the phase
diagrams of lyotropic complex fluids. The case of oriented interfaces, which corresponds to a tilting of the
amphiphilic molecules on the interfaces, is also considered.@S1063-651X~97!09311-2#

PACS number~s!: 64.70.Ja, 61.30.Gd
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I. INTRODUCTION

There exist different types of phase transitions in lyot
pic complex fluids. For the isotropic-nematic@1# and
uniaxial-biaxial–nematic transitions@2# the shape of the mo
lecular aggregates changes continuously with the exte
variables, i.e., the evolution in their forms corresponds t
homogeneous deformation. In this case the resulting equ
rium structures are generally related by group-subgroup
lationships and the transitions between the correspon
phases are second order or slightly first order@3#. However,
the most typical and widespread features of the phase
grams of complex-fluid systems is the existence ofrecon-
structive phase transitions between ordered structur:
When varying the concentration of the surfactant and
temperature of these systems, the molecular aggregate
hibit discontinuous modifications in their geometry, with
drastic reorganization of the aggregates@4#. This leads to the
formation of new structures across strongly first-order tr
sitions surrounded by large polyphasic regions. The rec
structive character of these transitions is revealed by the
sence of a group-subgroup relationship between the ne
formed and the initial structures. This is the case, for
stance, of the transitions between lamellar, cubic, and h
agonal mesophases, which are found in several lyotro
mixtures@5#, polymer blends@6# and copolymer@7# systems,
microemulsions@8#, vesicles@9#, biological membranes@10#,
etc.

Another specific property of the phase diagrams of co
plex fluids is the stabilization ofreversed~inverted! me-
sophases@11#. In these mesophases the molecular aggreg
and the solvent have approximately exchanged config
tions with respect to the corresponding direct mesopha
with the same basic geometry@5,11#. In lyotropic mixtures
@5,11,12# in which reversed phases were first recognized,
occurrence of direct and reversed micellar structures
been comprehensively enumerated by Ekwall@11#. Thus the

*On leave from the University of Picardie, Amiens, France.
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main classes~hexagonal, cubic, tetragonal, orthorhomb
etc.! of reversed phases exist in more distinct temperatu
concentration ranges of the phase diagram than their d
analogs. Furthermore, the normal-to-reversed reconstruc
transformation generally can be promoted by adding an
ditional hydrophilic ~or less commonly lypophilic! com-
pound to the binary system of amphiphiles and solvent. T
transformation usually takes place through a sequence o
termediate mesophases, among which the lamellar pha
generally present@11,12#.

A number of theoretical models have been proposed
the transitions between disordered mesophases@13,14# as
well as for the transitions to ordered mesophases star
from the isotropic liquid@15,16#. However, up to now there
has been no general theoretical approach to the recons
tive transitions that occurbetweenordered mesophases. O
the other hand, there has been no attempt to explain theo
cally the stability of reversed mesophases and their conn
tions with the corresponding direct phases.

The aim of this article is to propose a unifying phenom
enological model of reconstructive transitions between
dered mesophases in lyotropic complex fluids, which
cludes the description of the mutual relationship between
direct and reversed phases. More precisely, we will sh
through an illustrative example of the lamellar-tetragon
transition that the transitions between direct phases~Sec. II!
and between the direct phases and their reversed ana
~Sec. III! can be obtained using a single symmetry-break
order parameter that consists in theperiodic undulation of
the interfacesbetween the molecular aggregates and the
vent. In this description we will assume that the amphiph
~sticklike! molecules are orthogonal, on average, to the in
faces. The more seldom case, which occurs when the m
ecules are tilted with respect to the interfaces, i.e., the cas
oriented interfaces, will be considered in Sec. IV. It will be
shown to relate to another irreducible degree of freedom
sociated with the assumed parent symmetry. In Sec. V
theoretical predictions of the model will be discussed a
shown to clarify some features of the phase diagrams o
number of lyotropic systems. We conclude briefly in Sec. V
6889 © 1997 The American Physical Society
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II. TWO-DIMENSIONAL MODEL
OF THE LAMELLAR-TETRAGONAL

RECONSTRUCTIVE TRANSITION

A. Symmetry aspects of the model

Let us introduce the basic features of our model throug
two-dimensional representation of the lamellar-tetrago
transformation in a system of amphiphiles in solution. Ea
equilibrium state is assumed to be formed by an assemb
two types of regions, denotedM andW, separated by inter
faces and corresponding, respectively, to the molecular
gregates and to the solvent. Figure 1 illustrates one of
possible sequences of mesophases assumed in our app
decomposing the successive steps of the transformation
tween the lamellar and tetragonal phases in the plane per
dicular to the lamellae. In agreement with the current th
retical @17,18# and experimental@19,20# descriptions of the
instabilities in ordered mesophases, one can see tha
symmetry-breaking mechanism inducing the reorganiza
of the mesophases consists in a periodic undulation of
interfaces when varying the concentration of surfactant or
temperature. Note that the lamellar (L) -tetragonal (C)
transformation takes place across two types~‘‘connected’’
O1 and ‘‘disconnected’’O2) of intermediate mesophase
which are separated by atopological transition@21#, denoted
T in Fig. 1. This transition occurs between phases of ide
cal symmetries having a different topology of the surfac
limiting the molecular aggregates and the solvent.

Figure 2 represents another more complete seque
~cycle! of transformations that includes four orientation
and translationaldomainsof the L, C, O1, andO2 phases.
Two distinct domains of the same mesophase transform
each other by combinations of a fourfold rotation with t
discrete translations (a/2,0), (0,a/2) ,and (a/2,a/2) corre-
sponding to half of the undulation periods along thex andy
axes and their diagonal, respectively.a is the side of the
square in Fig. 1.

In order to formalize the transformation processes rep
sented in Figs. 1 and 2 one can restrict them to the (x,y)
plane and write the equation of the interfaces in two dim
sions asC(x,y)50. C is assumed to bepositive in the M
regions andnegativein the W regions. The minimal two-
dimensional space group that contains all the symmetry

FIG. 1. Sequence of mesophases exhibiting the lamellarL),
intermediate (O1,O2), and tetragonal (C) phases.T denotes a to-
pological transition.
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erations leaving invariant theL, C, O1, andO2 phases~and
their different domains! is

G05C4v3R2, ~1!

whereR2 denotes the group of continuous translations in
(x,y) plane.G0 is the minimal symmetry group that allow
one to describe the lamellar-tetragonal transformation an
not a priori associated with a concrete structure. It will b
assumed to correspond to the parent symmetry, denote`,
for the set ofL, C, O1, andO2 phases. Restricted to a sing
domain ~Fig. 1!, the mesophases possess the symm
groups:

L:C2v3,~Rx ,Zy!,

C:C4v3~Zx ,Zy!, ~2!

~O1 ,O2!:C2v3~Zx ,Zy!,

where the Schoenflies notation is used for the point-gro
symmetries andRx ,Zx ,Zy denote, respectively, a continuou
translation alongx and discrete translations alongx andy.

Since all the phases are periodic, with at least one of
tetragonal discrete translationsZx5(a,0) and Zy5(0,a),
C(x,y) can be developed in Fourier series as

C~x,y!5 (
n,p52`

1`

Cnpe
2ip[ ~nx1py!/a] , ~3!

wheren and p are integers. One can show~the Appendix!
that the coefficients of the first harmonics of this seri
C10,C01,C 1̄05C10* and C0 1̄5C01* , form the basis of a
four-dimensional irreducible representation ofG0, denoted

FIG. 2. Sequence of mesophases forming a cycle that inclu
four distinct domains of theL, C, O1, andO2 phases.
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56 6891THEORY OF RECONSTRUCTIVE PHASE TRANSITIONS . . .
G1. We will now demonstrate thatG1 induces, for different
equilibrium values of the preceding coefficients, the differe
phases pertaining to the sequence of Fig. 1. In other wo
these coefficients will be shown to representthe four com-
ponents of the order parameter describing the transitio
between the L, C, O1, and O2 phases.

Let us writeC105r1eiu1, andC015r2eiu2. SinceG0 is a
group depending on two continuous parameters (Rx) and
(Ry), u1 and u2 are ‘‘Goldstone’’ variables, i.e., their shif
does not modify the geometry of the phases but only d
places them globally in space, as can be foreseen in Fig
Hencer1 andr2 represent the twoeffectivecomponents of
the order parameter transforming asG1. From the set of ma-
trices expressingG1 one can construct, as shown in the A
pendix, two independent basic invariants

I 15r1
21r2

2 , I 25r1
2r2

2 , ~4!

which constitute the rational basis of integrity@22# of G1.
Therefore, the order-parameter expansion that transform
G1 has the general form

F~r1 ,r2!5a1I 11a2I 1
21a3I 1

31•••1b1I 21b2I 2
21•••

1c12I 1I 2•••. ~5!

Minimization ofF with respect tor1 andr2 yields three
stable states, the symmetries of which are the subgroup
G0, given by Eq.~2!: For r1Þ0 andr250 ~or, equivalently,
r150 andr2Þ0) theL phase is stabilized. Forr15r2Þ0,
one obtains theC phase. The intermediateO1 andO2 phases
correspond tor1Þr2Þ0. Figure 3 represents the theoretic
phase diagrams associated with the expansion~5! when trun-
cated at the sixth degree inr1 andr2, in the plane (a1, b1)
of the phenomenological coefficients. Assuming a linear
pendence ofa1 and b1 as functions of the concentrationc
and the temperatureT allows one to deduce thec-T phase
diagram from the (a1, b1) phase diagram by alinear trans-
formation that preserves the topology shown in Fig. 3. O
can see that theL-C transition takes place either across t
(O1 ,O2) phase, through two second-order transition lin
@Fig. 3~a!#, or across a first-order transition line@Fig. 3~b!#
depending on the sign of the coefficientc12. Note that these

FIG. 3. Theoretical phase diagram associated with the Lan
expansion~5! truncated at the sixth degree, in the plane of t
phenomenological coefficients (a1,b1). ` denotes the parent phas
of symmetryG0. The double-headed arrow indicates the thermo
namic path followed in Fig. 1. Dashed and full lines are, resp
tively, second-order and first-order transitions lines.~a! c12,0 and
~b! c12.0.
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phase diagrams have a physical meaning only fora1,0
since in our approach the parent` symmetry does not cor
respond to a stable state. Note also that theO1 andO2 states
do not have separated regions of stability, i.e., the topolo
cal O1-O2 transition is not taken into account by a mod
based on the sole expansion~5!.

The preceding deficiencies actually reveal the insu
ciency of the standard Landau approach for describing rec
structive transitions. In the present case the phenomeno
cal approach has to be completed by using the equa
providing the form of the interfaces. Considering only t
first harmonics in Eq.~3!, i.e., taking into account exclu
sively the components of the symmetry-breaking order
rameter, one can write this equation in the form

C~x,y!5C001r1cosS 2px

a D1r2cosS 2py

a D50, ~6!

where the conditionsu15u250,p have been taken into ac
count.

Equations~5! and ~6! allow us to describe the full distri-
bution of stable states and the corresponding transitions
tween them as represented in Fig. 4, in the order-param
space«5(r1 ,r2). Figure 4 reveals the following.

~i! Four domains of theL phase are located on the axes
« space and the domains of theC phase on its diagonals. Th
general directions of« space correspond to the stability r
gions of theO1 andO2 phases.

~ii ! The interior of the central square in Fig. 4, which
defined byur16r2u,1, is excluded from the« space since it
corresponds to a phase formed exclusively by molecular
gregates or by the solvent, which possesses an isotropic s
metry.

~iii ! The topological transitions take place betweenO1
and O2 along the directions prolongating the sides of t
central square. These directions are defined by the equa
ur26r1u561. Figure 4 reveals also that other topologic
transitions take place forinfinite values of ur1u and ur2u,
between two types~disconnected and connected! of tetrago-
nal phases, in the directions of the diagonals. Figure 5 sh
the change in configuration of theM andW regions for this
type of topological transition in the (r1 ,r1) direction. On
can see that the transition occurs for an equal concentra

u

-
-

FIG. 4. Distribution of the mesophases of Fig. 2 in the ord
parameter space.
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6892 56B. METTOUT et al.
of molecular aggregates and solvent, i.e., when theM andW
regions occupy equal surfaces.

B. Effective thermodynamic potential

As illustrated by Figs. 1, 2, 4, and 5, the concentrationc
of molecular aggregates in solvent is an essential variatio
parameter for the evolution and stabilization of the m
sophases. The suitable thermodynamic potential accoun
for the evolution of concentration-dependent~open! systems
should contain explicitly the concentration c expressed
terms of the order-parameter components. The depend
of c on r1 andr2 can be obtained by calculating the ratio
the surfaceSM corresponding to anM region with respect to
a constant total surfaceS containing theM andW regions.
One can take, for example,S5a2, which is the surface of the
squares indicated in Fig. 1. Hence, as shown in Fig. 6,
concentration of molecular aggregates is defined by

c5
SM

S
5

1

~a/2!2E0

a/2

x~y!dy,

wherex(y) is deduced from Eq.~6!:

x~y!5
a

2p
arccosH 2

1

r1
F11r2cosS 2py

a D G J .

One finds

FIG. 5. Change in configuration of theM andW regions corre-
sponding to the topological transition taking place for infinite v
ues ofr1 andr2 in the directions of the diagonals of the (r1 ,r2)
plane.

FIG. 6. Unit cell used for the calculation of the concentrati
c(r1 ,r2) given by Eq.~7!.
al
-
ng

n
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e

c~r1 ,r2!512
1

p2E21

z0
arccosH ~11r2z!

r1
J ~12z2!21/2dz,

~7!

with z5cos(2py/a) and z05(r121)/r2 if r12r2.1,
whereasz051 if r12r2,1.

The thermodynamic potential~free energy! that allows
one to describe the stable states of the systemat variable
concentration and fixed difference between the chemical
tentialsof the M andW regions can be written as

F~r1 ,r2!5F~r1 ,r2!2 c̃ ~r1 ,r2!~m2m0!, ~8!

where m and m0 are, respectively, the exchange chemic
potentials between theM andW regions in the solution@23#
and the exchange chemical potentials for the independ
fluids at the same temperature and densities.c̃5c2 1

2 is the
reduced concentration. Note that in Eq.~8!, F(r1 ,r2) has
the meaning of theinterfacial energybetween theM andW

regions and2 c̃ (m2m0) represents the contribution of th
volumes of the fluids.

r1 and r2 are not convenient variables for working o
the stable states of the system whenc varies since they do
not allow a continuous crossover atc5 1

2 as their values be-
come infinite for this concentration~see Figs. 4 and 5!. This
difficulty can be solved as follows: One can writeC(x,y) in
the form

C~x,y!5C00F11h1cosS 2px

a D1h2cosS 2py

a D G , ~9!

whereh15r1 /C00 andh25r2 /C00 transform asr1 andr2
since C00 is a scalar. Figure 7 shows that the orde
parameter space« is split into two subspaces:«1 for c. 1

2

and «2 for c, 1
2 ~represented by two symmetrical sheets

Fig. 7!, which correspond, respectively, to a positive and
negative sign ofC00. This configuration is not practica
since the crossover atc5 1

2 from one subspace to anothe
takes places for infinite values ofr1 and r2. One can then

FIG. 7. Schematic representation on the order-parameter s
«, split into two sheets«1 and «2. The tangent sphere is used
express the order-parameter components in spherical coordin
(u,w).
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56 6893THEORY OF RECONSTRUCTIVE PHASE TRANSITIONS . . .
perform a mapping of the« space on the sphere that is ta
gent to«1 and«2 ~see Fig. 7!. This sphere is defined by

C00
2 1r1

21r2
251. ~10!

One can see that each couple (h1, h2) coincides withtwo
points of the sphere, of spherical coordinates (u, w) ~one
point in each hemisphere! with

h15tanu cosw h25tanu sinw. ~11!

As a consequence, the northern and southern hemisph
correspond to the equilibrium values of the order param
for c. 1

2 and c, 1
2, respectively, while the equatorial plan

symbolizes regions of equal concentrations for theM andW

regions t(c5 1
2 ), with a continuous crossover between t

two hemispheres.

III. TRANSITIONS BETWEEN DIRECT AND REVERSED
MESOPHASES: FLUID REVERSAL SYMMETRY

A. Fluid reversal symmetry

We will now show that the formalism introduced in th
preceding section provides a natural description of the tr
sitions between direct and reversed mesophases. Equ
~9! expresses that a change in the sign ofC00 for identical
values ofh1 andh2 corresponds to the replacement of theM
regions by theW regions or, in other words,to the transfor-
mation from a direct to its reverse mesophase. Accordingly,
the stability of the phases is determined bythe reduced order
parameter(h1,h2) and the sign ofC00. Hence the direct
and reversed mesophases are obtained for the same valu
h1 andh2, but in the different subspaces«1 and«2. Thus,
if the distribution of mesophases shown in Fig. 4 takes pl
in the «1 subspace, an identical distribution holds for«2 in
which all the mesophases are reversed. This means that there
exists a symmetry operation transforming a direct mesoph
in its reversed analog. This operation, denotedF, which we
term the fluid-reversal symmetry, is defined in the order-
parameter space« by

F~C00,h1 ,h2!5~2C00,h1 ,h2!. ~12!

The effect ofF corresponds in real space to the exchan
of the respective volumes of surfactant and solve
F(VM)5VW or, equivalently, to a permutation of the co
centration of the system fromc> 1

2 ~the upper hemisphere i
Fig. 7! to F(c)512c< 1

2 ~the lower hemisphere!. Note that
F has the property to commute with the space-symme
operations of the system and thatF0F is an identity.

In the example considered in Sec. II the fluid has be
assumed to be different on the two sides of an interfa
Therefore, theF symmetry should in this case be at the u
most an aproximate symmetry since the interface should
spontaneously curved towards a preferential side due to
different interactions between the fluids and the surfa
However, one can make the symmetry close to an exact s
metry by adding, for example, a third component, which m
change the spontaneous curvature of the interfaces. In
case, the approximate nature of the fluid reversal symm
does not preclude its influence on the phase diagram
which the mesophase are inserted. This will be made m
res
er
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clear by considering the effect ofF on the thermodynamic
potentialF given by Eq.~8! and expressed in spherical co
ordinates.

In order to work outF(u,w) one can use the following
method. One searches for the more general functionF(u,w)
invariant byG0 ~and eventually byF) that can be developed
in a Fourier series of the variablesu andw, i.e., in powers of
the functionsa5eiu, b5e2 iu, c5eiw, and d5e2 iw. These
functions constitute the four components of the~nonlinear!
order parameter. The corresponding curved manifold~from
which the origina5b5c5d50 is excluded! obeys the con-
straints uau5ubu5ucu5udu51, ab51, and cd51 relating
the four functions. These constraints and the transforma
properties of the functions byG0 ~and eventually byF! al-
low an explicit determination of the invariantsI 1 and I 2 as
functions ofu andw. In the present case one can make use
the following practical considerations.

~i! F(u,w) can be deduced fromF(r1,r2) by a nonlinear
singular transformation of the invariantsI 1 ,I 2: @ I 1(r1,r2),
I 2(r1, r2)]→@ I 18(u,w), I 28(u,w)#, that is, a transformation
that does not induce new singularities and preserves the s
metry of the irreducible representationG1. If these condi-
tions are fulfilled, the simplest form can be taken forI 18(u,w)
and I 28(u,w).

~ii ! F acts on the spherical coordinates (u,w) as
F(u,w)→(p2u,p1w). Henceh1 andh2, as expressed by
Eq. ~11!, are invariant byF, as well as the invariants
I 15tan2u and I 25tan2usin22w. ThereforeF(u,w) deduced
from Eq. ~5! is also invariant byF. Following the preceding
remarks, one can take the simplest invariantsI 185cos2u and
I 285sin22w, which possess the same transformational prop
ties as (I 1, I 2) with respect toG0 andF. Thus the interfacial
energy takes the form

F~u,w!5a1cos2u1a2cos4u1•••1b1sin22w1•••

1c12cos2u sin22w1•••. ~13!

For a system noninvariant byF, but invariant byG0, one can
use the set of basic invariantsI 195cosu andI 285sin22w since
F(cosu)52cosu. The form ofF(u,w) is, in this case,

F~u,w!5a1cosu1a2cos2u1•••1b1sin22w1•••

1c12cosu sin22w1•••. ~14!

Note that the periodic functions~13! and~14! are defined for
any values of 0<u<p and 0<w<2p, namely, for unnec-
essary small values of the trigonometric functions cosu and
sin2w.

~iii ! For the concentrationc given by Eq.~7!, one has by
definitionF(c)512c. Therefore, the reduced concentratio

c̃ is antisymmetric with respect toF:F( c̃ )5F(c)2 1
2

51
2 2c52 c̃ . c̃ can actually be written under the gener

form

c̃5cos~u!G~ I 18 ,I 28!, ~15!
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6894 56B. METTOUT et al.
whereG is an integral function depending exclusively onI 18
andI 28 . We will now consider separately the phase diagra
associated with systems noninvariant and invariant, res
tively, by F.

B. F -noninvariant systems

The noninvariance of a system under the symmetry op
tion F is the rule when the interfaces are spontaneou
curved towards theM or W regions or when the two sides o
the interfaces are inequivalent. Minimizing the free ene
F(u,w)5F(u,w)2 c̃ (u,w)(m2m0) with respect tou and
w, whereF(u,w) and c̃ (u,w) are expressed by Eqs.~14!
and~15!, respectively, one finds the four stable phasesL, C,
O1, and O2, in agreement with the results obtained by t
minimization ofF(r1 ,r2) with respect tor1 and r2 ~Sec.
II !. The phases are stabilized for any values ofu and for the
following equilibrium values ofw:

L:S w50,
p

2 D ,

C:S w5
p

4 D , ~16!

~O1 ,O2!:S wÞ0,
p

4
,
p

2 D .

Note that the valueu50 corresponds to a point belonging
the central square in (r1,r2) space, which is excluded from
the physical space.

The upper part of Fig. 8 illustrates the symmetry conn
tions between the stable mesophases in the«1 subspace
(0<u<p/2), whereas the lower part of the figure shows t
analogous configuration for the reversed mesophases in«2

(p/2<u<p). Here the reversed mesophases are dist
phases~except for theL and O2 phases! resulting from the
application ofF, which is not a symmetry operation of th
system. As indicated in Fig. 8, the transition between a dir

FIG. 8. Symmetry connections between the mesophases in
«1 ~upper part of the figure! and «2 ~lower part! order-parameter
subspaces for anF-noninvariant system.T denotes a topologica
transition.
s
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e

ct

ct

phase and its reversed analog can be of the topological t
This can be viewed in Fig. 9, which represents the locat
of the direct and reversed phases in the (I 19 ,I 28) space. The
dashed lines in this figure are lines of topological transitio
The figure also reveals the existence of a continuous cr
over between theL phase and a reversed-F L phase.

Direct and reversed mesophases should not be prese
multaneously in the phase diagrams ofF-noninvariant sys-
tems. However, there may exist some exceptions. In this c
the two phases should be located symmetrically with resp
to c5 1

2. However, since they are distinct phases, their sh
should be asymmetrical with respect to the preceding va
A possible illustrative example of anF-noninvariant system
is the decaoxyethylene-glycol monolauryl-ether-oleic ac
water system@11# in which the direct and reversed cub
phases occur, respectively, around the concentrat
c50.43 and 0.58 for low and middle concentrations of ole
acid. The phases are located symmetrically with respec
c5 1

2, but the transition lines surrounding the phases
asymmetric with respect to the preceding value. Other p
sible examples ofF-noninvariant systems are proposed
Sec. V.

C. F -invariant systems

A system invariant byF has its interfaces indifferently
spontaneously curved towards theM or theW regions, i.e.,
one may have eventually spontaneously planar interface
addition, the two sides of the interfaces should be equival
Using the form ofF(u,w) given by Eq.~13! and the expres-
sion of c̃ (u,w) given by Eq. ~15!, the minimization of
F(u,w) with respect tou andw yields eight possibly stable
ordered mesophases. Their symmetries and interconnec
are shown in Fig. 10. One can see that in addition to theL,
C, O1, andO2 phases, one finds four additional mesopha
denotedL* , C* , O1* , andO2* , which are obtained for fixed
values of the anglesw and u. Thus L* corresponds to
u5p/2, w50,p/2, C* is stabilized foru5p/2, w5p/4, and
(O1* ,O2* ) are obtained foru5p/2 andwÞ0,p/4,p/2. These
‘‘starred’’ phases possess the remarkable property thathalf
of their symmetry operations are combined with F. Their
space groups are generated by the symmetry elements

L* :FF•s,F•S 0,
a

2D G ,
C* :FF•C4 ,s,F•sd ,F•S a

2
,
a

2D G , ~17!

he

FIG. 9. Location of the mesophases of Fig. 8 in the space (I 19 ,
I 28). The dashed line denotes a topological transition line.
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~O1* ,O2* !:FC2 ,F•s,F•S a

2
,
b

2D G ,
where the standard crystallographic notation for the com
sition of symmetry operations is used for the planes (s,sd)
and axes (C2,C4). As shown in Fig. 10, this implies that th
M andW regions occupy equal surfaces, i.e., the phases
stabilized forc5 1

2. For this value ofc the antisymmetric par
c̃ of the potentialF(u,w) vanishes andF is fully invariant
by F.

In an F-invariant system the direct and reversed m
sophases correspond todomains of the same equilibrium
state, transforming one into another by application ofF. This
property appears in Fig. 11, which represents the stable
sophases in (I 18 I 28) space. The figure shows that the starr
phases coincide with points or lines that limit, respective
the lines and surfaces symbolizing the regions of stability
theL, C, O1, andO2 phases. Figure 12 shows a sequence
mesophases in which the reversed phases take place a
result of an enlargement of theM regions with respect to the
W regions, in a progressive crossover from the north
(«1) to the southern («2) hemispheres of the spheric
order-parameter space going through the equatorial p

(c5 1
2 ), which is the region in which the starred phases

defined.

FIG. 10. Symmetry connections between the mesophases fo
F-invariant system. The equilibrium values ofu and w and the
corresponding symmetry groups are given for theM , C, L, O1, and
O2 phases. The symmetry groups of the starred phasesC* , L* ,
O1* , andO2* , which are realized forc5

1
2, are given in the text.

FIG. 11. Location of the mesophases classified in Fig. 10, in
space (I 18 ,I 28).
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In the phase diagram ofF-invariant systems, the direc
and reversed mesophases will be disclosed in distinct reg
symmetrically located with respect toc5 1

2. Since they cor-
respond to the same equilibrium state, their phase bounda
should be symmetrical with respect to the preceding va
For example, in the sodium-caprylate decanol-water a
sodium-caprylate-nonanol-water systems@11# the hexagonal
direct (E) and reversed (F) mesophases take place arou
the water concentrationc5 1

2 for low and high concentrations
of decanol or nonanol, respectively. Futhermore, in th
systems the lines limiting theE and F phases are almos
symmetric with respect to the preceding concentration. Ot
possible examples ofF-invariant systems are described
Sec. V.

The preceding examples show that although the inv
ance byF can, in principle, be realized only in definite in
tervals of concentration, the conjunct stability of the dire
and reversed phases can be enhanced by additional co
nents that may extend the region of visibility of the phas
This remark holds also for the observation of the star
phases. For a system invariant byF one maya priori ob-
serve such phases only for ac5 1

2 concentration. However
such a concentration can never be strictly realized, and s
the starred phase appears as aline in the T-c phase diagram
a transition between starred and unstarred phases should
in principle, be observed. However, the existence of star
phases can be verified in the polyphasic regions that
round first-order transition lines. In these demixed region
should be possible to observe phases corresponding to
centrations that differ from the nominal values associa
with the phases surrounding the transition line. This prope
stems from the connection existing between them-T ~chemi-
cal potential temperature! andc-T phase diagrams. In them-
T phase diagrams the starred phases display stability surf
that become lines in thec-T phase diagram. But there ma
exist in them-T phase diagrams starred-unstarred first-or
transitions associated with demixedregions that should re-
main surfaces in thec-T phase diagrams. This property
still valid for systems that display only an approximate i

an

e

FIG. 12. Sequence of mesophases for anF-invariant system.
The reversed phases take place in the same sequence as the
phases as a result of an enlargement of theM regions.
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variance byF, i.e., for which the noninvariant part of th
potentialF(u,w) is small with respect to its invariant part. I
this case one should observe in them-T plane either a con-
tinuous crossover or a first-order isostructural transition
tween two regions of unstarred phases corresponding
small noninvariant part for theF(u,w) potential.

In summary, it has been shown in this section that
existence of reversed mesophases in lyotropic complex fl
can be understood by considering an additional symm
operation, the fluid-reversal symmetryF, which provides a
classification of ordered mesophases. In particular, the e
tence of a different type of mesophase, in which half of
symmetry elements are combined withF, has been pre-
dicted. On the other hand, it has been suggested that thF
symmetry, despite its approximate character, may influe
the type of ordering existing in regions of the phase diagra
of some complex-fluid systems. Such considerations
strongly reminiscent of the influence of the exchange in
action on the property of magnetically ordered systems. T
analogy helps to understand to what extent the approxim
character of theF symmetry may eventually limit its influ-
ence on the observable properties of lyotropic systems. T
in the phenomenological approach to magnetic transiti
@24#, the thermodynamic potential is divided into two pa
that reflect, respectively, the~isotropic! exchange interaction
and the ~anisotropic! relativistic interactions~spin-orbit,
spin-spin, etc.!. While the relativistic terms determine th
magnetic symmetry of the phases, the exchange forces
mainly responsible for the type of magnetic ordering sin
they are several orders of magnitude larger than the rela
istic forces.

In a similar way there exists a hierarchy of symmetries
complex fluids depending on the relative magnitude of
interactions: If theF-invariant part of the potentialF(u,w)
is substantially larger than theF-noninvariant part, the prop
erties of the system will reflect the action of theF symmetry.
In this respect the existence in the same phase diagra
direct and their reversed mesophases and the symmetri
cation of these phases with respect toc5 1

2 are, following our
model, definite indications of the influence of the flui
reversal symmetry.

IV. LYOTROPIC COMPLEX-FLUID SYSTEMS
WITH ORIENTED INTERFACES

In Secs. II and III the amphiphilic molecules were impli
itly assumed to be, on average, orthogonal to the interfa
This actually corresponds to the most common configura
found among ordered mesophases in complex fluids. Fig
13 illustrates schematically this orthogonal configuration
the lamellar phase@Fig. 13~a!# for an undulated lamella
phase@Fig. 13~b!# and for the direct tetragonal@Fig. 13~c!#
and reversed tetragonal@Fig. 13~d!# mesophases. Howeve
in some cases, such as theLb8 mesophase found in interac
ing lipid membranes@25–27#, the molecules aretilted with
respect to the surfaces, in a smectic-C type of configuration.
Figure 14 shows two types of tilting that may occur for t
amphiphilic molecules within a lamella, i.e., with the sam
orientation for the two molecular layers@Fig. 14~a!# or with a
chevron-type ordering@Fig. 14~b!#. One can see in Fig. 14~a!
that the surfaces determined by the heads of the amphip
-
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possess anorientation, which is given by the direction of the
projection of the molecular vectors on the interface.

The aim of the present section is to show that in the c
of oriented interfaces, the phenomenological model deve
oped in the previous sections applies differently and yield
number of specific properties for the corresponding syste

FIG. 13. Orthogonal configuration of the amphiphile molecu
on the interfaces for~a! a lamellar phases,~b! an undulated lamellar
phase,~c! a tetragonal phase, and~d! a reversed tetragonal phase

FIG. 14. Different types of tilting occurring for a lamellar phas
with oriented interfaces~a! and ~c! Opposed orientations for two
consecutive interfaces of theM regions, with~a! a simple and~c! a
double interlayer periodicity.~b! and ~d! Identical orientations for
two consecutive interfaces of theM regions with~b! a simple and
~d! a double interlayer periodicity in the case of a chevron-ty
structure.
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In particular, the undulation mechanism that induces
lamellar-tetragonal transformation obeys constraints dif
ent from those for systems with ‘‘orthogonal’’ interfaces.
order to make this point clear we will first analyze in mo
detail the undulation mechanism used in Sec. II.

A. Symmetry-breaking undulation mechanisms

The undulation of the interfaces assumed in Fig. 1 d
plays the following properties:~i! Two neighboring surfaces
limiting the same (M or W) region are dephased byp, and
~ii ! two consecutiveM ~or W) regions behave identically
i.e., they are in phase, ensuring a minimal periodicity (a) in
the direction perpendicular to the interfaces. These two
tures are not arbitrary and represent necessary condition
the sequence of phases shown in Fig. 1 to take place. Fi
13~b! illustrates, for example, the property that the abse
of dephasing between two consecutive regions would
allow a symmetry-breaking mechanism giving rise to the
tragonal mesophase. Along the same line, the fact that thM
and W regions play a symmetric role is also a necess
condition for the existence of the fluid-reversal symmetry

A different situation occurs when the interfaces are o
ented. It is easy to verify from the lamellar configuratio
shown in Figs. 14~a! and 14~b! that an identical orientation
for two consecutiveM ~or W) regions excludes a phase o
position for two neighboringM and W regions. In order to
obtain such a dephasing one has to double the period
(2a) in the direction perpendicular to the interfaces, i.e.,
assume a lamellar configuration of the type represente
Fig. 14~c! or 14~d!, in which two consecutive lamellae of th
M regions exhibit opposed orientations of the molecules
interfaces. Note that in this case theM andW regions do not
behave symmetrically. A consequence that will be sho
hereafter isthe absence of F symmetry for systems with o
ented interfaces.

Figures 15 and 16 illustrate the undulation mechanis
corresponding, respectively, to the lamellar stackings re
sented in Figs. 14~c! and 14~d!. They induce a sequence o
phases that are labeled, by analogy with Fig. 1,L, O1, O2,
andC. The micelles are formed after a topological transiti
(T) between theO1 ~connected! andO2 ~disconnected! me-
sophases. Note that in Fig. 15 two consecutiveM regions
undulate in phase opposition and two consecutiveW regions

FIG. 15. Sequence ofL, O1, O2, and C mesophases for the
lamellar stacking of Fig. 14~c!. The arrows denote the orientation
of the interfaces.
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are in phase, whereas the reversed situation is found in
16. In other words, the undulation mechanisms assume
these two figures are reciprocal and can be deduced f
another by the permutationM↔W, i.e., by anF symmetry.

B. Field lines and oriented domains

While the position of the interfaces in the (x,y) plane is
given by the equationC(x,y)50, the orientation of the in-
terfaces can be expressed by two quantities:~i! the vector
field CW (x,y), where the value ofCW (x,y) on a given inter-
face corresponds to the projection on this interface of
molecular vector, i.e., for a unit-molecular vector it measu
the tilt angle with respect to the normal to the interfaces, a
~ii ! since there exists an infinite set of field lines for a giv
vector fieldCW , one has to chose the field line on whichCW is
determined~see below! and represents the actual interface

Since all the structures shown in the sequences of Figs
and 16 are periodic, the two componentsCx and Cy of
CW (x,y) can be expanded in Fourier series

Cx~x,y!5 (
n,p52`

1`

Cnp
x e~2ip/a!~nx1py!,

~18!

Cy~x,y!5 (
n,p52`

1`

Cnp
y e~2ip/a!~nx1py!.

Considerations similar to those developed in Sec. II for
scalar quantityC(x,y) lead to a simplified form forCx and
Cy . Namely, one considers the first harmonics in Eq.~18!,
which areC01

x ,C10
y ,C0 1̄

x
5C01

x * andC 1̄0
y

5C10
y * . The pre-

ceding components span the other four-dimensional irred
ible representation, denotedG2, of the product groupG0 ~see
the Appendix!. Then one writes C01

x 5r1eiu1 and
C10

y 5r2eiu2, in which the Goldstone variablesu1 andu2 can
be assumed to be zero. This yields

Cx5r1cos
2py

a
, Cy5r2cos

2px

a
. ~19!

On the other hand, the equation of the field lines is

FIG. 16. Sequence ofL, O1, O2, and C mesophases for the
lamellar stacking of Fig. 14~d!.
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r2sinS 2px

a D2r1sinS 2py

a D56k, ~20!

where the value of the constantk obeys the conditions
2(r11r2)<k<r11r2. Note that the field lines corre-
sponding to the same value ofk but to opposite signs are
oriented in opposite directions and determine the sameM or
W region. Therefore, the full set of stable structures and th
orientations are determined by the values ofr1 and r2 and
by the absolute value of the constantk. Figure 17 shows the
distribution and orientations of the stable mesophases in
order-parameter space (r1 ,r2) assuming theM andW con-
figurations of Fig. 15. It reveals the following similaritie
and differences with respect to the ‘‘scalar’’ distribution o
Fig. 4.

~i! The L phases are located on the axes of the (r1 ,r2)
space, while theC phases are on the diagonals. The gene
directions correspond to the intermediate (O1,O2) me-
sophases.O1 and O2 are separated by lines of topologica
transitions that elongate the sides of the central square.
cept for its borders, this square is excluded from the ord
parameter space.

~ii ! The M andW regions play a disymmetrical role, i.e.
theW regions undulate in phase with opposed orientation
two consecutiveW region, whereas two consecutiveM re-
gions are in phase opposition with opposed orientatio
They are alternatively depending on the values ofr1 andr2,
swollen or contracted. Note, in this respect, that Figs. 15 a
16 represent two essentially different mechanisms~order pa-
rameters! that, however, are associated with the same ir
ducible representation (G2). If only one mechanism is as
sumed, the disymmetry between theM and W regions
forbids the existence of direct and reversed mesophase
the same system.

~iii ! The permutation (r1 ,r2)→(2r1 ,2r2) reverses the
orientation of the interfaces, whereas the permutatio
(r1 ,r2)→(r1 ,2r2) and (r1 ,r2)→(2r1 ,r2) correspond to
a combination of glide planes with translations (a,0) and
(0,a), respectively, therefore, the four domains that are s
bilized for each mesophase in the order-parameter sp

FIG. 17. Distribution of the mesophases with oriented inte
faces, in the order-parameter space (r1 ,r2).
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(r1 ,r2) are deduced from each other by combinations
fourfold or twofold rotations and glide planes. Note that,
variance with the mesophase distribution shown in Fig. 4,
multiplication of r1, r2, and k by a positive constantl
modifies the structure of the mesophases, although the form
of the interfaces remains unchanged. It results in a differ
value ofukW u, i.e., in a change of the tilt angle. In particular,
the limit c50 (k→0) opposed surfaces get closer and te
towards a zero field line@Fig. 18~a!# at which the molecular
vectors become perpendicular to the interfaces (u 5 0!: The
W regions occupy the whole surface. This occurs for infin
values ofr1 andr2 in Fig. 17. Whenc→1@k→6(r16r2)#
the tilt angle tends, on the contrary, to its maximal val
u5p/2, which coincides with an orientation of the mo
ecules parallel to the interfaces: TheM region fully occupies
the surface of the system@Fig. 18~b!#. This occurs at the
border of the central square (r16r256k) in Fig. 17. We
will now return to the thermodynamic considerations th
had been used to determine the equilibrium values of
effective order-parameter components (r1,r2) in Fig. 17.

C. Symmetry of mesophases with oriented interfaces

The symmetry of the irreducible representationG2 allows
one to construct the same basic invariantsI 1 and I 2 ~see the
Appendix! given by Eq.~4!, which are constructed fromG1.
However, one has to consider also the coupling between
form of the interfaces and their orientation. This can be fo
seen from the equation of the interfaces, which, as dedu
from Eq. ~20!, can be written

Fr2sinS 2px

a D2r1sinS 2py

a D G2

5k2. ~21!

Therefore, the interfacial energyF(r1 ,r2 ,k) depends on the
three invariantsI 1, I 2, and I 3 5 k2. Its minimization yields
the same equilibrium conditions as in the case of nonorien
surfaces: L(r150, r2Þ0, or r1Þ0, r250), C(r15r2
Þ0), and (O1,O2) (r1Þr2Þ0). However, the symmetrie
of these phases are different due to the orientation of
surfaces. One finds, using the standard notation of t
dimensional groups, the symmetry groups

L:P2gm~Rx ,Zy!,

C:P4gm~Zx ,Zy!, ~22!

~O1 ,O2!:P2gg~Zx ,Zy!,

-

FIG. 18. Lamellar mesophases in the limit situations when~a!
r1 and r2 become infinite along the axes of the order-parame
space (c→0) and ~b! r1 and r2 reach their limit values on the
border (r1 5 r2 5 1! of the central square in Fig. 17 (c→1).
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which possess glide planes shown in Fig. 19.
Equation~21! can be expressed under the developed fo

r1r2Fcos
2p

a
~x1y!2cos

2p

a
~x2y!G1

r1

2
2cosS 4py

a D
1

r2

2
2cosS 4px

a D1S r1
21r2

2

2 D 5k2. ~23!

This contains two harmonics of the Fourier series~3! corre-
sponding to the wave vectorsaW * 6bW * and 2aW * , whereaW *
andbW * are the reciprocal lattice vectors ofaW andbW . In other
words, if the orientation of the surfaces are neglected in F
15, the system will display the translations (a/2,a/2) and
(a/2,2a/2) instead of (a,a). This reveals that the descrip
tion of the form of the interfaces, for systems with orient
interfaces, requires one to consider at least two secon
scalar order parameters: an order-parameter spanned b
basic functionse62ip/a(x1y) and e62ip/a(x2y), which
transforms asG1(a* 6b* ), and an order parameter spann
by the basic functionse64ipx/a ande64ipy/a, which cor-
responds to the higher harmonics of wave vector 2aW * .

As in Sec. III, a realistic description of the phase diagra
containing ordered mesophases with oriented surfaces sh
make use of a thermodynamic potential containing explic
the concentrationc. A calculation analogous to the one lea
ing to Eq.~7! gives here

c~r1 ,r2 ,k!58E
~v121!/v2

0

arccosH S v2z11

v1
D J ~12z2!21/2dz,

~24!

wherev i5r i /k ~i 5 1,2!. Thus the full thermodynamic po
tential will have the general form

F~r1 ,r2 ,k!5F~r1 ,r2 ,k!2 c̃ ~r1 ,r2 ,k!~m2m0!,
~25!

where c̃ , m, andm0 have the same meaning as in Eq.~8!.

V. DISCUSSION

The phenomenological approach to reconstructive ph
transitions in lyotropic complex fluids, developed in this a
ticle, has been introduced through a two-dimensional mo
of the lamellar-tetragonal transition. Extending the mode
three dimensions increases the number of possible stabl
dered mesophases and the variety of their symmetries as
as the types of possible transition sequences. For examp

FIG. 19. Symmetry elements corresponding to theC, O2, andL
mesophases. The dashed lines represent glide planes.
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the lamellar-cubic transition@28# the six-component relevan
order parameter yields seven stable anisotropic mesoph
corresponding to different continuous or discrete subgro
of Oh 3 R3. At the lamellar-hexagonal transition, one find
seven types of ordered mesophases@28# induced by a six-
component order parameter transforming as an irreduc
representation of theC6v3R2 symmetry group. For these
two examples, one can show that the essential results~the
structure of the order-parameter space, existence of an
derlying F symmetry for systems with nonoriented inte
faces, topological properties of the phase diagrams, etc.! ob-
tained for the lamellar-tetragonal case are still verified@29#.
Therefore, in the following discussion it will be assumed th
these results may provide a general qualitative interpreta
of lyotropic systems.

The lamellar-tetragonal (L-C) transformation coincides
with a realistic situation found in a number of ternary sy
tems @11#, such as sodium-caprylate–water1 decanol,
sodium-caprylate–water1 caprylic acid, or decaethylen
glycol monolauryl ether–water1 oleic acid. In these sys
tems theL andC phases identify, using the notation of Ek
wall, the lamellarD and squareC phases@11#, respectively.
The two preceding phases are separated by the so-callB
phase, which is an undulated lamellar phase correspondin
the O1 intermediate mesophase in our model. Analogous
theO2 disconnected phase in Fig. 1 is similar to theR phase
reported in potassium oleate water1 p-xylene @11#.

Let us verify the applicability of one of the main prope
ties of the phase diagrams of lyotropic systems, i.e., the s
metric location with respect toc5 1

2 of the direct and re-
versed mesophases and the eventual symmetry of
stability domains~in the case ofF-invariant systems! with
respect to the preceding value. Tables I and II summarize
corresponding data from Ekwall’s review@11# for binary and
ternary lyotropic systems respectively, in which one can fi
both a direct phase and its reversed analog. Table I sh
that there exist only few binary systems fulfilling the prece
ing requirements. Furthermore, they contain only the dir
L1 and reversedL2 micellar solutions, but not the two type
of ordered mesophases simultaneously. One can note the
lowing.

~i! The L1 andL2 regions are approximately symmetric
with respect toc5 1

2 and occupy the extremities of theWM
axis. An exact symmetrical location ofL1 and L2 with re-
spect toc5 1

2 can be realized in a narrow interval of temper
ture, e.g., around 100°C for the aerosolOT-water system.

~ii ! The lamellarD phase always occupies an intermedia
region between theL1 and L2 regions. Its stabilization re-
quires sometimes the addition of a few percent of a th
component, as in Triton-x-100–water@11#, where it appears
for 5% of decanol, or in decaoxyethylene glycol-water@11#,
where one needs to add 10% oleic acid. In Emu-O2-water
the D phase fully occupies at 20°C, the intermediate reg
betweenL1 andL2. It would be of interest to verify in this
region an eventual progressive change between the direc
reversed structures.

~iii ! When the hexagonal (E) phase is stabilized, it occu
pies a region surroundingc5 1

2. In Triton-x-100–waterE is
almost symmetrical on both sides of the preceding value
is bounded by two-phase regions, coexisting respectiv
with L1 andL2.



6900 56B. METTOUT et al.
th
fo
as
s

ir
te
o

na
ta

s

n
i

di
th
i

r o

II
re
t
p
l

e
re
ec

e

the

e in-
for
nol,

s-

h
to

tion

ame

the
or
reas
n
has

ce of

two
ure,
e-

that
to
It appears from Table I that a change of curvature of
interfaces, which is necessary following our description
the stabilization of direct and reversed ordered mesoph
in the same system, has not been observed in a binary
tem, as it was already noted by Eckwall@11#. The possibility
of realizing such a change is considerably improved if a th
appropriate component is added to the amphiphilic-wa
system. Table II clearly illustrates this property since nine
the listed systems possess simultaneously in their ter
phase diagrams direct and reversed mesophases. In the
the systems have been divided into four groups.

Group A.This group includes the systems that posses
their phase diagram both the direct (E) and reversed (F)
hexagonal mesophases. When the additional solute is a
cohol or a fatty acid, which are hydrophilic compounds,
has the effect of removing theL1 and L2 regions in the
water-rich and solute-rich corners of the triangular phase
grams, respectively. The action of the solute transforms
symmetric location of the direct and reversed phases w

respect to the middle (c5 1
2 ) of the water-association-colloid

triangle side onto a symmetry with respect to the mediato
the triangle passing by the solute vertex~i.e., the actual sym-
metry with respect to the axisc5 1

2 is lost!. One can verify
this property for the six systems listed at the top of Table
The E andF phases are found to be approximately cente
on the preceding axis for low and high contents of the solu
The shape of these phases is almost symmetrical with res
to the same axis, for the systems containing decano
nonanol, reflecting the influence of theF symmetry. By con-
trast, when the solute is a fatty acid the shapes ofE andF
are disymmetrical, denotingF-noninvariant systems. In th
decaoxyethilene glycol–water system the symmetry with
spect to the mediator of the triangle holds also for the dir
e
r
es
ys-

d
r
f
ry
ble

in

al-
t

a-
e

th

f

:
d
e.
ect
or

-
t

(I 18) and reversed (I 298) cubic phases for low and middl
contents of oleic acid, respectively.

Group B.The same sequences of direct phases as in
phase diagrams of the systems belonging to groupA are
found, but the corresponding reversed phases (F or I 29) are
absent. It denotes a strong spontaneous curvature of th
terfaces that cannot be inversed. This can be viewed,
instance, in the example of potassium-caprate-water-octa
where theC phase is absent from theL1-B-C-E sequence,
found in the sodium caprylate system, while its reversedK
analog appears.

Group C.The four systems pertaining to this group po
sess the particularity that the regionsL1 andL2 form a single
regionL extending from pure water to pure solute in whic
one goes continuously from micelles of the direct type
micelles of the reversed type. It corresponds to the situa
assumed in our approach forF-invariant systems, in which
one finds direct and reversed mesophases within the s
sequence.

Group D.The phase diagrams of the systems listed for
D systems in Table II confirm the interpretation given f
F-noninvariant systems and the strong influence of the a
occupied by theL1 and L2 phases in the phase diagram o
the stabilization of direct or reversed phases. Thus one
either a sequence of direct mesophases when theL1 region
occupies a large area in the phase diagram or a sequen
reversed mesophase when theL2 region is predominant. The
spontaneous curvature of the interfaces is opposed in the
preceding types of systems and the change in curvat
which would allow the existence of both types of m
sophases, cannot be obtained by adding a solute.

Therefore, the analysis of the ternary phase diagrams
have been worked out in lyotropic systems allows one
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fi
t

d
a

dle
gle
an be
to
disclose three main classes of phase diagrams. In the
class theL1 and L2 micellar solutions occupy equivalen
areas of the phase diagrams. In this case the direct an
versed mesophases may both take place. They are loc
rst

re-
ted

symmetrically with respect to the axis passing by the mid
of the amphiphile-water side of the phase diagram trian
and by the solute apex. The direct and reversed phases c
symmetrically or nonsymmetrically shaped with respect



c

m
co

r
e

e
r-
e

r
a

of
m

di
ib
ro

pr

ne
tio

p

-

p-
f

er

6902 56B. METTOUT et al.
the preceding axis. The second class of phase diagrams
responds to the existence of a single micellar solutionL with
a continuous crossover between the direct and reversed
celles. Here the area occupied by the lamellar phase is
siderably reduced and one may expect that direct and
versed ordered mesophases occur within the same sequ
along theL phase. In the third class of phase diagrams on
the L1 or L2 micellar solution regions is predominant. Co
respondingly, one will find either direct or reversed m
sophases, but not both simultaneously.

VI. CONCLUSION

In summary, a general phenomenological approach to
constructive phase transitions in lyotropic complex fluids h
been proposed. The approach stresses the importance
versed mesophases for understanding the underlying sym
tries of such systems and the structure of the correspon
order-parameter space. It gives a description of the poss
symmetries of ordered mesophases and of the general p
erties of the phase diagrams of lyotropic systems and it
dicts the existence of new types of mesophases.
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APPENDIX

The wave vector of the planar tetragonal Brillouin zo
associated with the periodicity assumed for the undula
along x and/or y is kW15(2p/a,0). Its invariance group is
Cs5$c1 ,sy%; thus, with respect to the product grou
G05C4v ^ R2 assumed for the parent phase, the stark1* has

four brancheskW1,kW25(0,2p/a), kW352kW1, and kW452kW2,
which are obtained by the symmetry operationsC1, C4, C2,
andC4

3, respectively. The little groupCs possesses two irre
ducible representations~IR’s! denotedG1 ~the identity IR!
and G2, which correspond to a character21 for sz . Note
that G1 and G2 have, respectively, the transformation pro
erties of a scalar and of an axial vector since one has,
their respective bases (w1,w2), sz (w1) 5 w1 andsz (w2) 5
2(w2).
or-

i-
n-
e-
nce
of

-

e-
s
re-
e-

ng
le
p-

e-

n

or

The 434 matrices generatingG1 and G2 can be con-
structed using the procedure described in Ref.@22#. One
finds for G1

ŝy5S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D , ~A1!

Ĉ45S 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

D ,

t̂5S eikW1• tW 0 0 0

0 eikW2• tW 0 0

0 0 eikW3• tW 0

0 0 0 eikW4• tW

D ,

where tW denotes a translation in the (x,y) plane. The matri-
ces generatingG2 differ only from those ofG1 by the gen-
erating matrix

ŝy5S 0 0 0 21

0 0 21 0

0 21 0 0

21 0 0 0

D .

Using the standard projector techniques given in Ref.@22#,
one obtains by applying the matrices associated withG1 or
G2 to the four-component order paramet
(C10,C01,C 1̄0 ,C0 1̄), the invariants~rational basis of integ-
rity!

I 15C10C 1̄01C01C0 1̄ , I 25C10C 1̄0C01C0 1̄ .

Writing C105r1eiu1, C015r2eiu2, C 1̄05C10* , and
C0 1̄5C01* , one getsI 1 5 r1

2 1 r2
2 and I2 5 r1

2r2
2.
t.
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