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A phenomenological theory that describes the reconstructive transformations between ordered phases in
lyotropic complex fluids is proposed. The symmetry-breaking order parameter of such transformations is
assumed to be the undulation of the interfaces between the molecular aggregate regions and the solvent. It is
shown to coincide with the first harmonics of a Fourier series expressing the form of the interfaces. In this
framework, direct and reversed mesophases are shown to be related by a symmetry operation denominated the
fluid-reversal symmetry. This underlying symmetry of the system clarifies a number of features of the phase
diagrams of lyotropic complex fluids. The case of oriented interfaces, which corresponds to a tilting of the
amphiphilic molecules on the interfaces, is also considg®t063-651%97)09311-2

PACS numbd(s): 64.70.Ja, 61.30.Gd

[. INTRODUCTION main classeghexagonal, cubic, tetragonal, orthorhombic,
etc) of reversed phases exist in more distinct temperature-
There exist different types of phase transitions in lyotro-concentration ranges of the phase diagram than their direct
pic complex fluids. For the isotropic-nematil] and analogs. Furthermore, the normal-to-reversed reconstructive
uniaxial-biaxial—-nematic transitiorj] the shape of the mo- transformation generally can be promoted by adding an ad-
lecular aggregates changes continuously with the externalitional hydrophilic (or less commonly lypophilic com-
variables, i.e., the evolution in their forms corresponds to gound to the binary system of amphiphiles and solvent. This
homogeneous deformation. In this case the resulting equilibtransformation usually takes place through a sequence of in-
rium structures are generally related by group-subgroup reermediate mesophases, among which the lamellar phase is
lationships and the transitions between the correspondingenerally presertl1,12.
phases are second order or slightly first ordr However, A number of theoretical models have been proposed for
the most typical and widespread features of the phase diahe transitions between disordered mesoph4é8sl4 as
grams of complex-fluid systems is the existencerexfon- well as for the transitions to ordered mesophases starting
structive phase transitions between ordered structuresfrom the isotropic liquid 15,16. However, up to now there
When varying the concentration of the surfactant and thévas been no general theoretical approach to the reconstruc-
temperature of these systems, the molecular aggregates aire transitions that occubetweenordered mesophases. On
hibit discontinuous modifications in their geometry, with athe other hand, there has been no attempt to explain theoreti-
drastic reorganization of the aggregdfiék This leads to the cally the stability of reversed mesophases and their connec-
formation of new structures across strongly first-order trantions with the corresponding direct phases.
sitions surrounded by large polyphasic regions. The recon- The aim of this article is to propose a unifying phenom-
structive character of these transitions is revealed by the alenological model of reconstructive transitions between or-
sence of a group-subgroup relationship between the newlgered mesophases in lyotropic complex fluids, which in-
formed and the initial structures. This is the case, for in-cludes the description of the mutual relationship between the
stance, of the transitions between lamellar, cubic, and hexdirect and reversed phases. More precisely, we will show
agonal mesophases, which are found in several lyotropithrough an illustrative example of the lamellar-tetragonal
mixtures[5], polymer blend$6] and copolymef7] systems, transition that the transitions between direct phaSes. 1)
microemulsiong8], vesicleq 9], biological membranelsl0], and between the direct phases and their reversed analogs
etc. (Sec. Il can be obtained using a single symmetry-breaking
Another specific property of the phase diagrams of com-order parameter that consists in theriodic undulation of
plex fluids is the stabilization ofeversed(inverted me-  the interfacedetween the molecular aggregates and the sol-
sophasefll]. In these mesophases the molecular aggregatasent. In this description we will assume that the amphiphilic
and the solvent have approximately exchanged configurasticklike) molecules are orthogonal, on average, to the inter-
tions with respect to the corresponding direct mesophasedaces. The more seldom case, which occurs when the mol-
with the same basic geometf$,11]. In lyotropic mixtures ecules are tilted with respect to the interfaces, i.e., the case of
[5,11,13 in which reversed phases were first recognized, theriented interfaceswill be considered in Sec. IV. It will be
occurrence of direct and reversed micellar structures hashown to relate to another irreducible degree of freedom as-
been comprehensively enumerated by EkWhl]. Thus the  sociated with the assumed parent symmetry. In Sec. V the
theoretical predictions of the model will be discussed and
shown to clarify some features of the phase diagrams of a
*On leave from the University of Picardie, Amiens, France. number of lyotropic systems. We conclude briefly in Sec. VI.
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FIG. 1. Sequence of mesophases exhibiting the lamellgr (
intermediate Q,,0,), and tetragonal @) phasesT denotes a to-
pological transition.

Il. TWO-DIMENSIONAL MODEL
OF THE LAMELLAR-TETRAGONAL
RECONSTRUCTIVE TRANSITION

A. Symmetry aspects of the model

Let us introduce the basic features of our model through a
two-dimensional representation of the lamellar-tetragonal
transformation in a system of amphiphiles in solution. Each FIG. 2. Sequence of mesophases forming a cycle that includes
equilibrium state is assumed to be formed by an assembly dbur distinct domains of th&, C, O,, andO, phases.
two types of regions, denotdd andW, separated by inter-
faces and corresponding, respectively, to the molecular aggrations leaving invariant the, C, O,, andO, phasegand
gregates and to the solvent. Figure 1 illustrates one of ththeir different domainsis
possible sequences of mesophases assumed in our approach, B 2
decomposing the successive steps of the transformation be- Go=Caqp XM, @)

tween the lamellar and tetragonal phases in the plane perpeqren? denotes the group of continuous translations in the
dicular to the lamellae. In agreement with the current theo(x,y) plane.G, is the minimal symmetry group that allows
retical [17,18 and experimentg]19,2( descriptions of the  gne ‘to describe the lamellar-tetragonal transformation and is
instabilities in ordered mesophases, one can see that th@y a priori associated with a concrete structure. It will be
symmetry-breaking mechanism inducing the reorganizatioissymed to correspond to the parent symmetry, denoted
of the mesophases consists in a periodic undulation of thgyr the set ofL, C, O;, andO, phases. Restricted to a single
interfaces when varying the concentration of surfactant or thgomain (Fig. 1), the mesophases possess the symmetry
temperature. Note that the lamellak)( -tetragonal C)  groups:

transformation takes place across two typgtsonnected”

0, and “disconnected”’Q,) of intermediate mesophases, L:Cyy X, (Ry Zy),

which are separated bytapological transition[21], denoted

T in Fig. 1. This transition occurs between phases of identi- C:CayX(Zx,2y), @
cal symmetries having a different topology of the surfaces

limiting the molecular aggregates and the solvent. (01,02):C2, X(Zy,2y),

Figure 2 represents another more complete s:equenceh the Schoenfl tation i d for th int
(cycle) of transformations that includes four orientational WNere the schoentlies notation 1S used for the point-group

and translationalomainsof the L, C, O,, and O, phases. symme;ries and . Zy 'ZY denote, respeptively, a continuous
Two distinct domains of the same mesophase transform imgagglatlon"alﬁng(hand discrete t.ra(\jr_lslau_o'?s allongandy. fth
each other by combinations of a fourfold rotation with the _ >'N¢® ? dt € phases arle penodic, wit atd eas_t one of the
discrete translationsa(2,0), (0a/2) ,and @/2,a/2) corre- 'iltitragona t;scgete ltranze_ltlor&(—_(a,O).an Zy,=(0a),
sponding to half of the undulation periods along ¥handy (x.y) can be developed in Fourier series as

axes and their diagonal, respectively.is the side of the oo
square in Fig. 1. W(x.v)= P e2iml(nx+py)/al 3
In order to formalize the transformation processes repre- (x.y) n,p§=: L P ' @

sented in Figs. 1 and 2 one can restrict them to the)(

plane and write the equation of the interfaces in two dimenwheren and p are integers. One can shdithe Appendix
sions as¥(x,y)=0. ¥ is assumed to bpositivein the M that the coefficients of the first harmonics of this series,
regions andnegativein the W regions. The minimal two- W19, %o;, V1o=V7, and Vq1=V§;, form the basis of a
dimensional space group that contains all the symmetry opfour-dimensional irreducible representation ®§, denoted
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FIG. 3. Theoretical phase diagram associated with the Landau
expansion(5) truncated at the sixth degree, in the plane of the
phenomenological coefficientsi{,b;). ¢ denotes the parent phase
of sy_mmetryGo. The QOub_Ie-headed arrow |nd|cat_es the thermody- FIG. 4. Distribution of the mesophases of Fig. 2 in the order-
namic path followed in Fig. 1. Dashed and full lines are, respec-
tively, second-order and first-order transitions lin@s.c;,<0 and parameter space.

(b) c15>0.

phase diagrams have a physical meaning only &p0

T,. We will now demonstrate thdt, induces, for different Since in our approach the pargntsymmetry does not cor-
equilibrium values of the preceding coefficients, the different®Spond to a stable state. Note also that@hendO, states
phases pertaining to the sequence of Fig. 1. In other wordéj,o not have separatgd regions of.stab|I|ty, i.e., the topologi-
these coefficients will be shown to represéme four com- €al O;-O; transition is not taken into account by a model

ponents of the order parameter describing the transitions?@sed on the sole expansic). _ _
between the |.C, O,, and O, phases The preceding deficiencies actually reveal the insuffi-

Let us writeW ;o= p;€'°1, andW o= p,€' 2. SinceGy is a ciency of the s_tqndard Landau approach for describing recon-
group depending on two continuous parameters)(and structive transitions. In the present case thg phenomenolqg|-
(%), 6, and 6, are “Goldstone” variables, i.e., their shift cal approach has to be completed by using the equation
does not modify the geometry of the phases but only disp_rowdmg th_e fo_rm of the _mterfac_es. _Con5|der|ng only the
places them globally in space, as can be foreseen in Fig. #rSt harmonics in Eq(3), i.e., taking into account exclu-
Hencep, and p, represent the tweffectivecomponents of ~SIVely the components of the symmetry-breaking order pa-
the order parameter transforming Bg From the set of ma- @meter, one can write this equation in the form
trices expressind’; one can construct, as shown in the Ap-

i i ici ' 2mX 2
pendix, two independent basic invariants W (x,y) =W gyt plcos( . +p2005( ay —0, (6
li=p3+p3, 1,=pip3, (4)
where the condition®,= 6,=0,7 have been taken into ac-

which constitute the rational basis of integrit2] of I';.
Therefore, the order-parameter expansion that transforms & unt. : I
' Equations(5) and(6) allow us to describe the full distri-

I’y has the general form bution of stable states and the corresponding transitions be-
tween them as represented in Fig. 4, in the order-parameter
spaces =(p4,p,). Figure 4 reveals the following.
+Cpolqglp . (5 (i) Four domains of th& phase are located on the axes of
& space and the domains of tBephase on its diagonals. The

Minimization of F with respect tgp,; andp, yields three  general directions of space correspond to the stability re-
stable states, the symmetries of which are the subgroups gions of theO, and O, phases.
Gy, given by Eq(2): For p;# 0 andp,=0 (or, equivalently, (i) The interior of the central square in Fig. 4, which is
p1=0 andp,#0) theL phase is stabilized. Fgr,=p,#0,  defined bylp,+ p,|<1, is excluded from the space since it
one obtains th€ phase. The intermedia®; andO, phases corresponds to a phase formed exclusively by molecular ag-
correspond tg,# p,# 0. Figure 3 represents the theoretical gregates or by the solvent, which possesses an isotropic sym-
phase diagrams associated with the expan&@pwhen trun-  metry.
cated at the sixth degree iy andp,, in the plane 44, b;) (iii) The topological transitions take place betwe@n
of the phenomenological coefficients. Assuming a linear deand O, along the directions prolongating the sides of the
pendence ofi; andb; as functions of the concentratian  central square. These directions are defined by the equations
and the temperatur€ allows one to deduce the-T phase |p,*p;|/==1. Figure 4 reveals also that other topological
diagram from the 4,, b,) phase diagram by bnear trans-  transitions take place foinfinite values of|p;| and |p,|,
formation that preserves the topology shown in Fig. 3. Ondetween two typegdisconnected and connecjedf tetrago-
can see that the-C transition takes place either across thenal phases, in the directions of the diagonals. Figure 5 shows
(01,0,) phase, through two second-order transition linesthe change in configuration of thd andW regions for this
[Fig. 3(@], or across a first-order transition lif€ig. 3b)]  type of topological transition in thepg,p;) direction. On
depending on the sign of the coefficient. Note that these can see that the transition occurs for an equal concentration

f(pl,p2)=alll+a2|§+a3|i+ R +b1|2+b2|§+ e
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FIG. 5. Change in configuration of thd andW regions corre-
sponding to the topological transition taking place for infinite val-
ues ofp; andp, in the directions of the diagonals of thg4(,p,)
plane.

of molecular aggregates and solvent, i.e., whenvihandW
regions occupy equal surfaces.

FIG. 7. Schematic representation on the order-parameter space
g, split into two sheetg ™ ande ™. The tangent sphere is used to

] i ) express the order-parameter components in spherical coordinates
As illustrated by Figs. 1, 2, 4, and 5, the concentration (g,¢).

of molecular aggregates in solvent is an essential variational
parameter for the evolution and stabilization of the me-

hases. The suitable thermodynamic potential i e (1+p22) 2\~ 112
sophases. The suitable thermodynamic potential accounting ¢, o.)=1— —| arcco (1—22)~V2qz,
for the evolution of concentration-dependéaper systems me) -1 P1
should contain explicitly the concentration ¢ expressed in )
terms of the order-parameter components. The dependence
of ¢ onp; andp, can be obtained by calculating the ratio of with z=cos(2ry/a) and zy=(p;—1)/p, if p;—p,>1,
the surface5,, corresponding to aM region with respectto whereaszp=1 if p;—p,<1.
a constant total surfacs containing theM andW regions. The thermodynamic potentidfree energy that allows
One can take, for exampl8=a?, which is the surface of the one to describe the stable states of the sysatmaariable
squares indicated in Fig. 1. Hence, as shown in Fig. 6, theoncentration and fixed difference between the chemical po-

B. Effective thermodynamic potential

concentration of molecular aggregates is defined by tentialsof the M andW regions can be written as
w1 f e y)dy ®(p1,p2) = Fp1.p2) ~ C(pr.p2)(—po),  (8)
S (a2)?)o
where u and w, are, respectively, the exchange chemical
wherex(y) is deduced from Eq(6): potentials between thigl andW regions in the solutiof23]
and the exchange chemical potentials for the independent
a 1 2wy fluids at the same temperature and densitiesc— 1 is the
x(y)= 5 _arccos — P 1+pacog — : reduced concentration. Note that in E8), F(p,,p,) has

the meaning of thinterfacial energybetween theM andW

One finds regions and— ¢ (u— o) represents the contribution of the
volumes of the fluids.

p, and p, are not convenient variables for working out
ty the stable states of the system wheraries since they do
not allow a continuous crossover @t 3 as their values be-
come infinite for this concentratiofsee Figs. 4 and)5This
difficulty can be solved as follows: One can writgx,y) in
the form

27X

v

7004 ?)} ©

wheren;=p1 /¥y and7,=p, /¥y transform ap, andp,
since Wy, is a scalar. Figure 7 shows that the order-
parameter space is split into two subspaces:™ for c>3
ande~ for c<3 (represented by two symmetrical sheets in
Fig. 7), which correspond, respectively, to a positive and a
negative sign of¥y,. This configuration is not practical
FIG. 6. Unit cell used for the calculation of the concentration Since the crossover at= 3 from one subspace to another
c(p1,p2) given by Eq.(7). takes places for infinite values @f, and p,. One can then
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perform a mapping of the space on the sphere that is tan- clear by considering the effect & on the thermodynamic
gent toe™ ande~ (see Fig. J. This sphere is defined by  potential® given by Eq.(8) and expressed in spherical co-
5 s ordinates.

Voot p1tpe=1. (10) In order to work out®(#6,) one can use the following
method. One searches for the more general functof ¢)
invariant byG, (and eventually byr) that can be developed
in a Fourier series of the variablésand ¢, i.e., in powers of
the functionsa=¢'?, b=e'?, c=€'¢, andd=e"'¢. These

L =tand cosp  7,=tand sing. (12) functions constitute the four components of t(mmn_linear

order parameter. The corresponding curved maniftriom

As a consequence, the northern and southern hemisphere$ich the origina=b=c=d=0 is excluded obeys the con-
correspond to the equilibrium values of the order parametestraints |a|=|b|=|c|=|d|=1, ab=1, andcd=1 relating
for c>3 and c<3, respectively, while the equatorial plane the four functions. These constraints and the transformation
symbolizes regions of equal concentrations forvhendW  properties of the functions b, (and eventually byF) al-
regionst(c=1), with a continuous crossover between thelow an explicit determination of the invariants andl, as
two hemispheres. functions 9f¢9 andnp_. In the present case one can make use of
the following practical considerations.

(i) F(6,¢) can be deduced from(p,p2) by a nonlinear
singular transformation of the invariants,l,: [11(p1,p2),
,(p1, p2)]1—[11(6,¢), 15(0,¢)], that is, a transformation
A. Fluid reversal symmetry that does not induce new singularities and preserves the sym-

We will now show that the formalism introduced in the Metry of the irreducible representatidry. If these condi-
preceding section provides a natural description of the trartions are fulfilled, the simplest form can be taken o6, ¢)
sitions between direct and reversed mesophases. Equati@fd!z(,¢).

(9) expresses that a change in the sigriditf, for identical (i) F acts on the spherical coordinates),¢) as
values ofp, and 7, corresponds to the replacement of Me  F(60,¢)—(7— 60,7+ ¢). Hencen, and 7,, as expressed by
regions by théw regions or, in other wordgp the transfor-  Ed. (11), are invariant byF, as well as the invariants
mation from a direct to its reverse mesopha&ecordingly, |1=tarfé and|,=tar?6sin’2¢. ThereforeF(6,¢) deduced
the stability of the phases is determinedtbg reduced order from Eq. (5) is also invariant byF. Following the preceding
parameter(,,7,) and the sign of¥’,,. Hence the direct remarks, one can take the simplest invaridijts cosd and
and reversed mesophases are obtained for the same valued pf sin"2¢, which possess the same transformational proper-
7, and 7,, but in the different subspaces ande~. Thus, ties as (4, |,) with respect taG, andF. Thus the interfacial
if the distribution of mesophases shown in Fig. 4 takes placenergy takes the form

in thee™ subspace, an identical distribution holds #or in

which allthe mesophases are reversé&tiis means that there ,

exists a symmetry operation transforming a direct mesophase 7 (%:®)= 2,C08'0+2,C08 0+ - - +bysinf2e+ - --

in its reversed analog. This operation, dendtedvhich we +Cy,c020SiIP20+ - - -. (13
term the fluid-reversal symmetryis defined in the order-

parameter space by

One can see that each couplg,{ 7,) coincides withtwo
points of the sphere, of spherical coordinat#s ¢) (one
point in each hemispherevith

Ill. TRANSITIONS BETWEEN DIRECT AND REVERSED
MESOPHASES: FLUID REVERSAL SYMMETRY

For a system noninvariant by, but invariant byG,, one can
F(Woo,71,72) = (=Yo0,71,72). (12 use the set of basic invariarits= cosp and| ;= sin?2¢ since

The effect ofF corresponds in real space to the exchangeF(Cosg):_Cosa' The form of 7(6,¢) is, in this case,

of the respective volumes of surfactant and solvent,

F(Vy)=Vy or, equivalently, to a permutation of the con- F(0,0)=a,c080+ a,cosf+ - - - +bsirf2p+ - - -
centration of the system frome= 3 (the upper hemisphere in _

Fig. 7) to F(c)=1—c=1 (the lower hemisphejeNote that + 1,009 SiM2p+ - - . (14
F has the property to commute with the space-symmetry

operations of the system and tig$F is an identity. Note that the periodic functiond3) and(14) are defined for

In the example considered in Sec. Il the fluid has beer;iny values of & <= and 0< o=<2, namely, for unnec-

assumed to be different on the two sides of an interfaCeygsary small values of the trigonometric functionsécasd

Therefore, th&= symmetry should in this case be at the ut- ; 2.
most an aproximate symmetry since the interface should be (i) For the concentration given by Eq.(7), one has by

spontaneously curved towards a preferential side due 10 thgufinition F(c) = 1—c. Therefore, the reduced concentration
different interactions between the fluids and the surface- . . . : ~ 1
is antisymmetric with respect td-:F(c)=F(c)—3

However, one can make the symmetry close to an exact synf— A
metry by adding, for example, a third component, which may=z —c=—c. ¢ can actually be written under the general
change the spontaneous curvature of the interfaces. In arfgrm

case, the approximate nature of the fluid reversal symmetry

does not preclude its influence on the phase diagram in -

which the mesophase are inserted. This will be made more c=cog0)G(l1,15), (15
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FIG. 9. Location of the mesophases of Fig. 8 in the spage (
I7). The dashed line denotes a topological transition line.

phase and its reversed analog can be of the topological type.
This can be viewed in Fig. 9, which represents the location
of the direct and reversed phases in thg,(;) space. The
dashed lines in this figure are lines of topological transitions.

et (upper part of the figudeande~ (lower par} order-parameter
subspaces for af-noninvariant systemT denotes a topological

transition.

whereG is an integral function depending exclusively Bn

over between thé phase and a reversédi phase.

Direct and reversed mesophases should not be present si-
multaneously in the phase diagramsFehoninvariant sys-
tems. However, there may exist some exceptions. In this case
the two phases should be located symmetrically with respect

and!. We will now consider separately the phase diagramdo ¢= 3. However, since they are distinct phases, their shape
associated with systems noninvariant and invariant, respeghould be asymmetrical with respect to the preceding value.

tively, by F.

B. F-noninvariant systems

A possible illustrative example of a@a-noninvariant system

is the decaoxyethylene-glycol monolauryl-ether-oleic acid-
water systenf11] in which the direct and reversed cubic
phases occur, respectively, around the concentrations

The noninvariance of a system under the symmetry opergs= (.43 and 0.58 for low and middle concentrations of oleic

tion F is the rule when the interfaces are spontaneouslyiq. The phases are located symmetrically with respect to
curved towards thé! or W regions or when the two sides of ¢=1 pyt the transition lines surrounding the phases are
the interfaces are inequivalent. Minimizing the free eneryasymmetric with respect to the preceding value. Other pos-

D(6,0)=F(60,0)—C(6,0)(u— ue) With respect tod and

@, where 7(0,¢) and c(6,¢) are expressed by Eqéld)
and(15), respectively, one finds the four stable phase€,

04, and O,, in agreement with the results obtained by the

minimization of F(p;,p») with respect top; and p, (Sec.
II). The phases are stabilized for any value® @nd for the
following equilibrium values ofp:

L:<¢>=o,§>,

(16)

sible examples of-noninvariant systems are proposed in
Sec. V.

C. F-invariant systems

A system invariant byF has its interfaces indifferently
spontaneously curved towards the or the W regions, i.e.,
one may have eventually spontaneously planar interfaces. In
addition, the two sides of the interfaces should be equivalent.
Using the form ofF( 8, ¢) given by Eq.(13) and the expres-
sion of ¢(6,¢) given by Eq.(15), the minimization of
d(6,p) with respect tod and ¢ yields eight possibly stable
ordered mesophases. Their symmetries and interconnections
are shown in Fig. 10. One can see that in addition tolLthe
C, 0,, andO, phases, one finds four additional mesophases

f)_ denoted_*, C*, O} , andO% , which are obtained for fixed
2 values of the anglesr and 6. Thus L* corresponds to
0=m/2, o=0,7/2, C* is stabilized for0= w/2, o= /4, and
(O7 ,0%) are obtained fos= /2 ande+# 0,7/4,7/2. These

(ol,oz>:(<p¢o,§,

Note that the valu@#=0 corresponds to a point belonging to

the central square inpg,p,) space, which is excluded from
au ph.p2) Sp WhICh 1S excld “starred” phases possess the remarkable property hiaHt

the physical space. ; i . . )
The upper part of Fig. 8 illustrates the symmetry connecOf their symmetry operations are combined with Fheir

tions between the stable mesophases in dfiesubspace SPace groups are generated by the symmetry elements
(0= 0= m/2), whereas the lower part of the figure shows the
analogous configuration for the reversed mesophases in
(7/2< 6=<). Here the reversed mesophases are distinct
phasedqexcept for theL and O, phasep resulting from the
application ofF, which is not a symmetry operation of the
system. As indicated in Fig. 8, the transition between a direct

L*:

F-oF (oa
cO,Fe 15

aa
2'2

C*Z[F-C“,U,F-a’d,ll , (17
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FIG. 10. Symmetry connections between the mesophases for an
F-invariant system. The equilibrium values éfand ¢ and the
corresponding symmetry groups are given for kheC, L, O,, and
O, phases. The symmetry groups of the starred ph&sgsL*,
O7F , andO3 , which are realized foc= % are given in the text.

FIG. 12. Sequence of mesophases forRaimvariant system.
The reversed phases take place in the same sequence as the direct
phases as a result of an enlargement ofNheegions.

ab In the phase diagram df-invariant systems, the direct
Ca,F-oF- (5'5) } and reversed mesophases will be disclosed in distinct regions
symmetrically located with respect to=3. Since they cor-
respond to the same equilibrium state, their phase boundaries
where the standard crystallographic notation for the composhould be symmetrical with respect to the preceding value.
sition of symmetry operations is used for the planess))  For example, in the sodium-caprylate decanol-water and
and axes €,C,4). As shown in Fig. 10, this implies that the sodium-caprylate-nonanol-water systef4] the hexagonal
M andW regions occupy equal surfaces, i.e., the phases aigirect (E) and reversedK) mesophases take place around
stabilized forc= 3. For this value ot the antisymmetric part the water concentration= 3 for low and high concentrations
¢ of the potentiakP (6, ¢) vanishes andb is fully invariant ~ of decanol or nonanol, respectively. Futhermore, in these
by F. systems the lines limiting th& and F phases are almost
In an F-invariant system the direct and reversed me-symmetric with respect to the preceding concentration. Other
sophases correspond tibmains of the same equilibrium possible examples df-invariant systems are described in
state transforming one into another by applicationFafThis ~ Sec. V.
property appears in Fig. 11, which represents the stable me- The preceding examples show that although the invari-
sophases inl{ 15) space. The figure shows that the starredance byF can, in principle, be realized only in definite in-
phases coincide with points or lines that limit, respectively,tervals of concentration, the conjunct stability of the direct
the lines and surfaces symbolizing the regions of stability ofind reversed phases can be enhanced by additional compo-
theL, C, O, andO, phases. Figure 12 shows a sequence ofients that may extend the region of visibility of the phases.
mesophases in which the reversed phases take place as thHeis remark holds also for the observation of the starred
result of an enlargement of thé regions with respect to the phases. For a system invariant Byone maya priori ob-
W regions, in a progressive crossover from the northerrserve such phases only forcas 3 concentration. However,
(%) to the southern ) hemispheres of the spherical Such a concentration can never be strictly realized, and since
order-parameter space going through the equatorial plariée starred phase appears dma in the T-c phase diagram

(c=1), which is the region in which the starred phases arcd transition between starred and unstarred phases should not,
definzec,i In principle, be observed. However, the existence of starred

phases can be verified in the polyphasic regions that sur-
round first-order transition lines. In these demixed regions it

(07,0%):

f should be possible to observe phases corresponding to con-
2 c centrations that differ from the nominal values associated
! \ with the phases surrounding the transition line. This property
% % \\ 0, C* stems from the connection existing between th& (chemi-
01 ( 02) \ M cal potential temperatur@andc-T phase diagrams. In the-
Ijlé 0\\ . T phase diagrams the starred phases display stability surfaces
N LN |1 that become lines in the-T phase diagram. But there may
L exist in theu-T phase diagrams starred-unstarred first-order

transitions associated with demixeegionsthat should re-
FIG. 11. Location of the mesophases classified in Fig. 10, in themain surfaces in the-T phase diagrams. This property is
space [(1,13). still valid for systems that display only an approximate in-
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variance byF, i.e., for which the noninvariant part of the (@ b

potential F( 8, ¢) is small with respect to its invariant part. In w
this case one should observe in thel plane either a con- N \\ \\\\\ \\\\\\\\\\\\\\‘
tinuous crossover or a first-order isostructural transition be- \\“\\\\\\\ ;

tween two regions of unstarred phases corresponding to a
J P P J R

i i i AT e eI e ST e ERETEREIETITY
small noninvariant part for th&( 6, ¢) potential. UM Yidgyg g sbbbang o 188808011138

In summary, it has been shown in this section that the
existence of reversed mesophases in lyotropic complex fluids \\ \ \ \\
can be understood by considering an additional symmetry N :
operation, the fluid-reversal symmetR; which provides a N\\\\\\\\\ W\\\
classification of ordered mesophases. In particular, the exis-
tence of a different type of mesophase, in which half of the ©
symmetry elements are combined wifh has been pre- Y R W
dicted. On the other hand, it has been suggested thaf the 5 @ g
symmetry, despite its approximate character, may influence W
the type of ordering existing in regions of the phase diagrams  } N
of some complex-fluid systems. Such considerations are § Cnsg
strongly reminiscent of the influence of the exchange inter- \
action on the property of magnetically ordered systems. This §
analogy helps to understand to what extent the approximate .~ .«
character of thé= symmetry may eventually limit its influ-
ence on the observable properties of lyotropic systems. Thus, FIG. 13. Orthogonal configuration of the amphiphile molecules
in the phenomenological approach to magnetic transitionsn the interfaces fofa) a lamellar phasegb) an undulated lamellar

[24], the thermodynamic potential is divided into two parts phasec) a tetragonal phase, arid) a reversed tetragonal phase.
that reflect, respectively, thgsotropig exchange interaction

and the (anisotropig relativistic interactions(spin-orbit, possess anrientation which is given by the direction of the
spin-spin, etg. While the relativistic terms determine the projection of the molecular vectors on the interface.
magnetic symmetry of the phases, the exchange forces are The aim of the present section is to show that in the case
mainly responsible for the type of magnetic ordering sinceof oriented interfacesthe phenomenological model devel-
they are several orders of magnitude larger than the relatigped in the previous sections applies differently and yields a

istic forces. . . ~_number of specific properties for the corresponding systems.
In a similar way there exists a hierarchy of symmetries in

complex fluids depending on the relative magnitude of the
interactions: If theF-invariant part of the potentiab (6, ) (a) (b)
is substantially larger than tHe-noninvariant part, the prop- ey oo
erties of the system will reflect the action of tResymmetry.

In this respect the existence in the same phase diagram of
direct and their reversed mesophases and the symmetric lo-
cation of these phases with respecttes are, following our
model, definite indications of the influence of the fluid-
reversal symmetry.

IV. LYOTROPIC COMPLEX-FLUID SYSTEMS
WITH ORIENTED INTERFACES

In Secs. Il and Il the amphiphilic molecules were implic-
itly assumed to be, on average, orthogonal to the interfaces.
This actually corresponds to the most common configuration
found among ordered mesophases in complex fluids. Figure
13 illustrates schematically this orthogonal configuration for
the lamellar phas¢Fig. 13a)] for an undulated lamellar
phase[Fig. 13b)] and for the direct tetragondFig. 13c)]

and reversed tetragonffFig. 13d)] mesophases. However, (©) ()
in some cases, such as thg: mesophase found in interact-
ing lipid membrane$25-27, the molecules aréited with FIG. 14. Different types of tilting occurring for a lamellar phase

respect to the surfaces, in a smeditype of configuration.  \ith oriented interfacesa) and (c) Opposed orientations for two
Figure 14 shows two types of tilting that may occur for the consecutive interfaces of thé regions, with(a) a simple andc) a
amphiphilic molecules within a lamella, i.e., with the samedouble interlayer periodicity(b) and (d) Identical orientations for
orientation for the two molecular layelsig. 14@)] or witha  two consecutive interfaces of thé regions with(b) a simple and
chevron-type orderinffFig. 14b)]. One can see in Fig. &  (d) a double interlayer periodicity in the case of a chevron-type
that the surfaces determined by the heads of the amphiphilesucture.
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T

R=E=

FIG. 16. Sequence df, O;, O,, and C mesophases for the
FIG. 15. Sequence df, O;, O,, and C mesophases for the |3mellar stacking of Fig. 1.

lamellar stacking of Fig. 14). The arrows denote the orientations

f the interf . . . L -
ot the Intertaces are in phase, whereas the reversed situation is found in Fig.

16. In other words, the undulation mechanisms assumed in

In pariicular, the undulation mechanism that in_duce; the[hese two figures are reciprocal and can be deduced from
lamellar-tetragonal transformgthp obeys ccin.stralnts dlffer—arl other by the permutatiod W, i.e., by anF symmetry.
ent from those for systems with “orthogonal” interfaces. In

order to make this point clear we will first analyze in more B. Field i 4 oriented domai
detail the undulation mechanism used in Sec. Il. - Field lines and oriented domains

While the position of the interfaces in tha&,§) plane is

A. Symmetry-breaking undulation mechanisms given by the equatio’ (x,y) =0, the orientation of the in-

. . o . terfaces can be expressed by two quantiti@sthe vector
The undulation of the interfaces assumed in Fig. 1 dis-

: - . . field \P(x,y), where the value offf(x,y) on a given inter-
play§ the following propertlesﬂ) Two neighboring surfaces face corresponds to the projection on this interface of the
limiting the same 1 or W) region are dephased hy, and

(i) two consecutiveM (or W) regions behave identical molecular vector, i.e., for a unit-molecular vector it measures
. ; ) Tegions aentically,  ihedtilt angle with respect to the normal to the interfaces, and
i.e., they are in phase, ensuring a minimal periodicay in

the direction perpendicular to the interfaces. These two fea(_ii) since there exists an infinite set of field lines for a given

tures are not arbitrary and represent necessary conditions f§gctor field'¥, one has to chose the field line on whithis

the sequence of phases shown in Fig. 1 to take place. Figug_’ete.rmmedsee below and represents the actual mterfape.

13(b) illustrates, for example, the property that the absence Since all the structures shown in the sequences of Figs. 15

of dephasing between two consecutive regions would nognd 16 are periodic, the two components, and W of

allow a symmetry-breaking mechanism giving rise to the te-¥(x,y) can be expanded in Fourier series

tragonal mesophase. Along the same line, the fact thatithe

and W regions play a symmetric role is also a necessary

condition for the existence of the fluid-reversal symmetry.
A different situation occurs when the interfaces are ori-

ented. It is easy to verify from the lamellar configurations (18

shown in Figs. 14a) and 14b) that an identical orientation

for two consecutivéM (or W) regions excludes a phase op- = -

position for two neighborind and W regions. In order to \Ify(x,y)=n Zﬂc Y el py),

obtain such a dephasing one has to double the periodicity e

(2a) in the direction perpendicular to the interfaces, i.e., to . . _ )
assume a lamellar configuration of the type represented iFonsiderations similar to those developed in Sec. Il for the

Fig. 14(c) or 14(d), in which two consecutive lamellae of the Scalar quantity¥(x,y) lead to a simplified form fok¥’, and
M regions exhibit opposed orientations of the molecules and¥'y- Namely, one considers the first harmonics in Ed),
interfaces. Note that in this case theandW regions do not ~ which areW§, WY, W -=W§* and¥i =W)*. The pre-
behave symmetrically. A consequence that will be showrceding components span the other four-dimensional irreduc-
hereafter ighe absence of F symmetry for systems with ori-ible representation, denotég, of the product grougs, (see
ented interfaces the Appendix. Then one writes ‘lfélzple‘ % and

Figures 15 and 16 illustrate the undulation mechanismsp{oz pze‘ %, in which the Goldstone variableég and ¢, can
corresponding, respectively, to the lamellar stackings reprebe assumed to be zero. This yields
sented in Figs. 14) and 14d). They induce a sequence of
phases that are labeled, by analogy with FigL10,, O,, 2

. . . Ty 27X

andC. The micelles are formed after a topological transition W,=picos——, W ,=p,cos—. (19
(T) between theD, (connecteiland O, (disconnectedme- a a
sophases. Note that in Fig. 15 two consecufiteregions
undulate in phase opposition and two consecWiiveegions  On the other hand, the equation of the field lines is

—+ oo

‘I’X(X,Y) _ i p27 \Ifﬁpe(Z‘ wla)(nx+ py),
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(a) o (b) -

=0 & -8=3

=J

= -8=3

-

= -8=7

=1

= "e_ 2

N FIG. 18. Lamellar mesophases in the limit situations wken

|4 p1 and p, become infinite along the axes of the order-parameter

space ¢—0) and (b) p; and p, reach their limit values on the
border (p; = p, = 1) of the central square in Fig. 12{1).

(p1,p,) are deduced from each other by combinations of
fourfold or twofold rotations and glide planes. Note that, at
variance with the mesophase distribution shown in Fig. 4, the
multiplication of p1, p,, and k by a positive constank
- modifies the structure of the mesophasdthough the form
FIG. 17. Distribution of the mesophases with oriented inter-Of the interfaces remains unchanged. It results in a different

faces, in the order-parameter spape,p,). value of|k|, i.e., in a change of the tilt angle. In particular, at
the limitc=0 (k—0) opposed surfaces get closer and tend
towards a zero field lingFig. 18a)] at which the molecular
K, (200 vectors become perpendicular to the interfacgs=(0): The
W regions occupy the whole surface. This occurs for infinite
where the value of the constait obeys the conditions values ofp; andp, in Fig. 17. Whenc— 1[k— = (p1* p,)]
—(p1+py)<ksp;+p,. Note that the field lines corre- the tilt angle tends, on the contrary, to its maximal value
sponding to the same value kfbut to opposite signs are 6= /2, which coincides with an orientation of the mol-
oriented in opposite directions and determine the skingr  ecules parallel to the interfaces: Thikregion fully occupies
W region. Therefore, the full set of stable structures and theithe surface of the systefiFig. 18b)]. This occurs at the
orientations are determined by the valuespgfandp, and  border of the central square{* p,=*K) in Fig. 17. We
by the absolute value of the constdntFigure 17 shows the Wwill now return to the thermodynamic considerations that
distribution and orientations of the stable mesophases in thiead been used to determine the equilibrium values of the
order-parameter space(,p,) assuming thévl andW con-  effective order-parameter components p,) in Fig. 17.
figurations of Fig. 15. It reveals the following similarities
and differences with respect to the “scalar” distribution of C. Symmetry of mesophases with oriented interfaces
Fig. 4.
(i) The L phases are located on the axes of the, f5)

_[2mX [ 2my
poSIN T — p1SIN T

I+

The symmetry of the irreducible representationallows
space, while th€ phases are on the diagonals. The generaf"® to cpns_truct the same ba§ic invaridntand|; (see the
b P g g Appendix given by Eq.(4), which are constructed fromi;.

directions_correspond to the intermediat®,(Op) me- However, one has to consider also the coupling between the
sophasesO,; and O, are separated by lines of topological 1 R . .
P ! 2 b y polog form of the interfaces and their orientation. This can be fore-

transitions that elongate the sides of the central square. Ex: ¢ h i f the interf hich deduced
cept for its borders, this square is excluded from the order2€N Trom the equation ot the interfaces, which, as deduce

parameter space from Eq. (20), can be written

(i) The M andW regions play a disymmetrical role, i.e.,
the W regions undulate in phase with opposed orientation for
two consecutiveN region, whereas two consecutité re-
gions are in phase opposition with opposed orientations; : .
They are alternatively depending on the valuep pandp,, | nerefore, the interfacial energ‘;(zpl,pz,k)_de_pends on the
swollen or contracted. Note, in this respect, that Figs. 15 anzﬂree mvanan.tgl,_ 2, andl;_z k™. IFS minimization y|eIQS
16 represent two essentially different mechanigmder pa- the same equilibrium conditions as in the case of nonoriented

rameter$ that, however, are associated with the same ireSurfaces: L(p1=0, p2#0, or p17#0, p>=0), C(p1=p

ducible representationl’(). If only one mechanism is as- #0), and 0,,0,) (p1¢.p2¢0). However, the_ symmetries
sumed, the disymmetry between thé and W regions of these phases are different due to the orientation of the

forbids the existence of direct and reversed mesophases rface_s. One finds, using the standard notation of two-
the same system. Imensional groups, the symmetry groups

(iii) The permutation §1,p,)— (—p1,—p2) reverses the
orientation of the interfaces, whereas the permutations
(p1,p2)—(p1,—p2) and (p1,p2)—(—p1,p2) correspond to
a combination of glide planes with translations,@ and C:P4gm(Zy,Z,), (22)
(0,a), respectively, therefore, the four domains that are sta-
bilized for each mesophase in the order-parameter space (01,0,):P2g9(Z,Zy),

27X

. 2my
poSIN T

2
—plsin<T>} :kz. (21)

L:P2gm(Ry,Zy),
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the lamellar-cubic transitiof28] the six-component relevant
order parameter yields seven stable anisotropic mesophases
corresponding to different continuous or discrete subgroups
of O, X R3. At the lamellar-hexagonal transition, one finds
seven types of ordered mesophap28] induced by a six-
component order parameter transforming as an irreducible
representation of th€g, X |2 symmetry group. For these
two examples, one can show that the essential regilies
structure of the order-parameter space, existence of an un-
FIG. 19. Symmetry elements corresponding to@e,, andL derlying F symmetry for systems with nonoriented inter-

mesophases. The dashed lines represent glide planes. faces, topological properties of the phase diagrams) elte.
tained for the lamellar-tetragonal case are still verifi2€].
which possess glide planes shown in Fig. 19. Therefore, in the following discussion it will be assumed that

Equation(21) can be expressed under the developed fornthese results may provide a general qualitative interpretation
of lyotropic systems.
2m 2T P1, 5<47TY) The lamellar-tetragonal L(-C) transformation coincides

cos?(ery)—cos?(x—y)

+ —=“co

P1P2

2 with a realistic situation found in a number of ternary sys-
5 2 tems [11], such as sodium-caprylate—water decanol,
P2, 4mx P1tP2| sodium-caprylate—water- caprylic acid, or decaethylene
+ —°cog — |+ =k, (23 ; .
2 a 2 glycol monolauryl ether—watet- oleic acid. In these sys-

tems thel andC phases identify, using the notation of Ek-
This contains two harmonics of the Fourier seri@gscorre-  wall, the lamellaD and squar€ phaseg11], respectively.
sponding to the wave vectos' +b* and &*, wherea* The two preceding phases are separated by the so-dalled
andb* are the reciprocal lattice vectors afandb. In other ~ Phase, which is an undulated lamellar phase corresponding to
words, if the orientation of the surfaces are neglected in Figthe O, intermediate mesophase in our model. Analogously,
15, the system will display the translationa/2,a/2) and theO; disconnected phase in Fig. 1 is similar to R@hase
(a/2,—al2) instead of &,a). This reveals that the descrip- reported in potassium oleate waterp-xylene[11].
tion of the form of the interfaces, for systems with oriented ~Let us verify the applicability of one of the main proper-
interfaces, requires one to consider at least two secondafigs of the phase diagrams of lyotropic systems, i.e., the sym-

scalar order parameters: an order-parameter spanned by tRtric location with respect ta=3 of the direct and re-

basic functionse*2im/a®**¥) and e*2im/a®"¥), which versed mesophases and the eventual symmetry of their
transforms ad’;(a* =b*), and an order parameter spannedstability domains(in the case ofF-invariant systemswith
by the basic functions®4i mx/a ande*4iwy/a, which cor-  respect to the preceding value. Tables | and Il summarize the
responds to the higher harmonics of wave vectst 2 corresponding data from Ekwall’s revigr1] for binary and

As in Sec. lll, a realistic description of the phase diagram ernary Iyotropic systems _respectively, in which one can find
containing ordered mesophases with oriented surfaces sho &)th a direct phase and its reversed analog. Table I shows

make use of a thermodynamic potential containing explicitlyiE‘r"trther?r er):]'safnlé f‘m’ br';a?/ s;t/rs]tems Llilf'ilrll'ngn}heihpre(;:i?d't
the concentratioe. A calculation analogous to the one lead- g requirements. Furthermore, they contain only the direc

- - L, and reversed. , micellar solutions, but not the two types
ing to Eq.(7) gives here 1 2 X '
9 (g of ordered mesophases simultaneously. One can note the fol-

0 w,z+1 lowing. _ _ _
C(pl,pz,k)=8j arcco%( )’(1—22)‘1’2dz, (i) TheL, andL, regions are approximately symmetrical
(017 Doy “1 with respect toc=2 and occupy the extremities of théM
(24) axis. An exact symmetrical location &f; and L, with re-
spect toc= 3 can be realized in a narrow interval of tempera-
ture, e.g., around 100°C for the aero€dT-water system.
(i) The lamellaD phase always occupies an intermediate
region between thé&; and L, regions. Its stabilization re-
(25) quires sometimes the addition of a few percent of a third
component, as in Tritor-100—watel{ 11], where it appears
where¢, u, and u, have the same meaning as in E8). for 5% of decanol, or in decaoxyethylene glycol-wetet],
where one needs to add 10% oleic acid. In Emysater
the D phase fully occupies at 20°C, the intermediate region
betweenL,; andL,. It would be of interest to verify in this
The phenomenological approach to reconstructive phaseegion an eventual progressive change between the direct and
transitions in lyotropic complex fluids, developed in this ar-reversed structures.
ticle, has been introduced through a two-dimensional model (iii) When the hexagonaK) phase is stabilized, it occu-
of the lamellar-tetragonal transition. Extending the model inpies a region surrounding= 3. In Triton-x-100—waterE is
three dimensions increases the number of possible stable atmost symmetrical on both sides of the preceding value and
dered mesophases and the variety of their symmetries as wédl bounded by two-phase regions, coexisting respectively
as the types of possible transition sequences. For example,&ith L, andL..

wherew;=p; /k (i = 1,2). Thus the full thermodynamic po-
tential will have the general form

(I)(plipZ1k):]:(pl7p21k)_E(plip27k)(M_MO)v

V. DISCUSSION
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TABLE 1. Direct and reversed mesosphases in the binary phase diagrams of lyotropic systems. The
notation of Ekwall [11] is used for the mesophases.

Binary system Sequence of mesophases Ref.
Aerosol OT-water (100 °C) w L, D 1; L, M ¢
| l | |
. 1/2
Triton X-100-water (20 °C) w L, ? E ? L, M a
[ | | | | |
172
Emu 09-water (20 °C) w L, E D L, M b
| l ] | |
172
Emu 02-water (20 °C) w L, D L, M °

1/2
Decaoxyethylene glycol
monolauryl ether-water (20 °C) w L, 7} E L, M 2

172

2p. Ekwall, L. Mandell, and K. Fontell, Mol. Cryst. Liquid Cryst. 8, 157 (1969).
5S. Friberg, L. Mandell, and K. Fontell, Acta Chem. Scand. 23, 1055 (1969).
€J. Rogers and P. A. Winsor, J. Colloid Interace. Sci. 30, 247 (1969).

It appears from Table | that a change of curvature of thg(l]) and reversedI{’) cubic phases for low and middle
interfaces, which is necessary following our description forcontents of oleic acid, respectively.
the stabilization of direct and reversed ordered mesophases Group B.The same sequences of direct phases as in the
in the same system, has not been observed in a binary syghase diagrams of the systems belonging to gréupre
tem, as it was already noted by Eckwlll]. The possibility  found, but the corresponding reversed phasei(14) are
of realizing such a change is considerably improved if a thirdgpsent. It denotes a strong spontaneous curvature of the in-
appropriate component is added to the amphiphilic-wateferfaces that cannot be inversed. This can be viewed, for
system. Table Il clearly illustrates this property since nine ofinstance, in the example of potassium-caprate-water-octanol,
the listed systems possess simultaneously in their ternaiyhere theC phase is absent from tHe,-B-C-E sequence,
phase diagrams direct and reversed mesophases. In the taRlgng in the sodium caprylate system, while its revered
the systems have been divided into four groups. analog appears.

Group A.This group includes the systems that possess in - Group C.The four systems pertaining to this group pos-
their phase diagram both the dired)(and reversedR)  sess the particularity that the regidnsandL , form a single
hexagonal mesophases. When the additional solute is an gkgion L extending from pure water to pure solute in which
cohol or a fatty acid, which are hydrophilic compounds, itgne goes continuously from micelles of the direct type to
has the effect of removing the, and L, regions in the mjcelles of the reversed type. It corresponds to the situation
water-rich and solute-rich corners of the triangular phase diazssumed in our approach ferinvariant systems, in which
grams, respectively. The action of the solute transforms thgne finds direct and reversed mesophases within the same
symmetric location of the direct and reversed phases witliequence.
respect to the middlec= 3) of the water-association-colloid Group D.The phase diagrams of the systems listed for the
triangle side onto a symmetry with respect to the mediator oD systems in Table Il confirm the interpretation given for
the triangle passing by the solute verter., the actual sym- F-noninvariant systems and the strong influence of the areas
metry with respect to the axis= 3 is los. One can verify occupied by thed_; andL, phases in the phase diagram on
this property for the six systems listed at the top of Table Il:the stabilization of direct or reversed phases. Thus one has
The E andF phases are found to be approximately centerectither a sequence of direct mesophases when thegion
on the preceding axis for low and high contents of the soluteoccupies a large area in the phase diagram or a sequence of
The shape of these phases is almost symmetrical with respe@versed mesophase when theregion is predominant. The
to the same axis, for the systems containing decanol ospontaneous curvature of the interfaces is opposed in the two
nonanol, reflecting the influence of tResymmetry. By con- preceding types of systems and the change in curvature,
trast, when the solute is a fatty acid the shapeE @ndF  which would allow the existence of both types of me-
are disymmetrical, denoting-noninvariant systems. In the sophases, cannot be obtained by adding a solute.
decaoxyethilene glycol-water system the symmetry with re- Therefore, the analysis of the ternary phase diagrams that
spect to the mediator of the triangle holds also for the direchave been worked out in lyotropic systems allows one to
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TABLE II. Direct and reversed mesophases in the ternary phase diagrams of lyotropic systems. The
notation of Ekwall [11] is used for the mesophases.

Lamella
Direct r Reversed
Ternary systems mesophases phase mesophases Refs.
A Sodium caprylate-water + decanol ab
Sodium caprylate-water + nonanol L -B-C-E ed ‘
Sodium caprylate-water + caprylic acid ! L,-F def
Potassium caprylate-water + decanol g
Decaoxyethylene glycol monolaurly L,-B-CI|-E D of
ether-water +oleic acid Lo-15-F
Potassium oleate-water + decanol L,-B-E-R g
Octylammonium chloride-water + L-E
p-Xylene F f
B Sodium caprylate-water + octanol ¢
Sodium caprylate-water + heptanol L,-B-C-E } L, d
Sodium caprylate-water + hexanol d
Octyl ammonium cloride-water + decanol Ly-13 f
Potassium caprate-water + octanol L,-B-E L,-K £
Octyldimethy! ammonium chloride-water f
+ decanol Li-I,-E D
Octyltrimethyl ammonium chloride-water f
+ decanol
Decaoxyethyleneglycol monolauryl ether- L-I{-E L, of
water +caprylic acid
Potassium oleate-water + p-xylene L\-R-E cd
Cetyltrimethyl ammonium bromide-water L{-E fh
+hexanol
C Sodium caprylate-water + butanol L-E D
Sodium caprylate-water -+methanol } } L d
Sodium caprylate-water + propanol L-I{-E D
Sodium caprylate-water + ethanol } }
D Triton X-100-water + decanol L,-E
Triton X-100-water + oleic acid L-B-E L, } of
Emu 09-water + p-xylene }
Emu 09-water + hexadecane L-1|-I{-E D } i
Emu 02-water + p-xylene L,-F
Aerosol OT-water + caprylic acid L, }
Aerosol OT-water + decanol Ly-I>-F k

Aerosol OT-water + p-xylene

%P, Ekwall, I. Danielson, and L Mandell, Kolloid Z. 169, 113 (1960).

®L. Mandell and P. Ekwall, Acta. Polytech. Scand. Chem. 74, 1 (1968).

°P. Ekwall, L. Mandell, and K. Fontell, Mol. Cryst. Lig. Cryst. 157, 8 (1964).
dp, Ekwall, Advances in Liq. Crystals, Ed. G. Brown (Academic Press, NY 1975), Vol. 1, p. 1.
°P. Ekwall, S. Wiss, Friedrich-Schiller Univ. 14, 181 (1965).

P. Ekwall and L. Mandell, Kolloid Z. 233, 938 (1969).

2P, Ekwall, L. Mandell, and K. Fontell, J. Colloid Interfaces Sci. 31, 508 (1969).
hp, Ekwall, L. Mandell, and Fontell, J. Colloid Interfaces Sci. 29, 639 (1969).
is. Friberg, L. Mandell, and K. Fontell, Acta Chem. Scand. 23, 1055 (1969).

ip. Ekwall, L. Mandell, and K. Fontell, J. Colloid Interfaces 33, 215 (1970).

SK. Fontell, J. Colloid Interface Sci. 43, 156 (1973).

disclose three main classes of phase diagrams. In the firsymmetrically with respect to the axis passing by the middle
class theL,; and L, micellar solutions occupy equivalent of the amphiphile-water side of the phase diagram triangle
areas of the phase diagrams. In this case the direct and rand by the solute apex. The direct and reversed phases can be
versed mesophases may both take place. They are locatsgmmetrically or nonsymmetrically shaped with respect to
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the preceding axis. The second class of phase diagrams cor- The 4xX4 matrices generating’; and I', can be con-
responds to the existence of a single micellar solutiomith structed using the procedure described in Ré@2]. One
a continuous crossover between the direct and reversed nfinds forI"y

celles. Here the area occupied by the lamellar phase is con-

siderably reduced and one may expect that direct and re-

versed ordered mesophases occur within the same sequence

along thel phase. In the third class of phase diagrams one of oy=
theL; or L, micellar solution regions is predominant. Cor-

respondingly, one will find either direct or reversed me-

sophases, but not both simultaneously.

(A1)

=~ O O O
o B, O O
o O » O
SO O O Bk

VI. CONCLUSION

In summary, a general phenomenological approach to re-
constructive phase transitions in lyotropic complex fluids has
been proposed. The approach stresses the importance of re-
versed mesophases for understanding the underlying symme- .
tries of such systems and the structure of the corresponding elke-t 0
order-parameter space. It gives a description of the possible 0 Ky
symmetries of ordered mesophases and of the general prop- i= )
erties of the phase diagrams of lyotropic systems and it pre- 0 0 gekst
dicts the existence of new types of mesophases.

o O O -
=~ O O O
o » O O
S O +» O
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APPENDIX 0 0 0o -1
The wave vector of the planar tetragonal Brillouin zone ~ 0 o -1 0
associated with the periodicity assumed for the undulation Yl o -1 o0
along x and/ory is k;=(2m/a,0). Its invariance group is -1 0 0 0

Cs={cy,0y}; thus, with respect to the product group

Go=C,4,®R? assumed for the parent phase, the kfahas  Using the standard projector techniques given in R22],
four branchesky,k,=(0,2m/a), ks=—k;, and k,=—Kk,,  one obtains by applying the matrices associated Witror
which are obtained by the symmetry operati@s C,, C,, I'n to the four-component order parameter
andC2, respectively. The little groug, possesses two irre- (V19,V01,¥Y10,¥0o1), the invariantgrational basis of integ-
ducible representationdR’s) denotedI’; (the identity IR rity)

andI',, which correspond to a characterl for o,. Note

thatT'; andI", have, respectively, the transformation prop- 1=V W10+ VYorVor, 12=¥10¥10V0rVor-

erties of a scalar and of an axial vector since one has, for A A

their respective bases(,¢,), o, (¢1) = @, ando, (¢,) =  Writing  ¥i5=p1€'%, Wo=pe'?2, V=3, and

—(¢2). Wo1=V§,, one getd; = p? + p5 and I, = pip3.
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